Skip to main content

Tracers in the Study of Membrane Processes

  • Chapter
Membrane Physiology

Abstract

Isotopes are used so widely in biology and chemistry as tracers of processes and to map reaction pathways, it is important to be reminded at regular intervals of the assumptions made in their daily use; that is, we usually act as though isotopes were simply labeled atoms, i.e., ideal tracers. An ideal tracer is an atom which differs in some measurable way from the normal atom but has properties identical with those of the normal atom. There are, of course, no ideal tracers. Thus, the important question in the use of isotopes as tracers is how much an isotope or a molecule labeled with an isotopic element differs from the natural or common element or molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loevinger, R. 1969. Radiation Dosimetry, 2nd ed. Vol. F. Attix and E. Tochilin, ed. Academic Press, New York.

    Google Scholar 

  2. Loevinger, R., and M. Berman 1968. A schema for absorbed-dose calculations for biologically-distributed radionuclides. J. Nucl. Med. Suppl. 1, Pamphlet 1.

    Google Scholar 

  3. Evans, E. A., R. H. Green, J. A. Spanner, and W. R. Waterfield. 1963. Labilization of the a-hydrogen atom of generally labelled tritiated L-a-amino acids in the presence of renal D-amino acid oxidase. Nature 198: 1301–1302.

    Article  CAS  Google Scholar 

  4. Dunn, A., and S. Strahs. 1965. A comparison of 3H-and “C-glucose metabolism in the intact rat. Nature 205: 705–706.

    Article  PubMed  CAS  Google Scholar 

  5. Curran, P. F., A. E. Taylor, and A. K. Solomon. 1967. Tracer diffusion and unidirectional fluxes. Biophys. J. 7: 879–901.

    Article  PubMed  CAS  Google Scholar 

  6. Duncan, J. F., and G. B. Cook. 1968. Isotopes in Chemistry. Oxford Univ. Press ( Clarendon ), London and New York.

    Google Scholar 

  7. Melander, L. 1960. Isotope Effects on Reaction Rates. Ronald Press, New York.

    Google Scholar 

  8. Wolfsberg, M. 1969. Isotope effects. Annu. Rev. Phys. Chem. 20: 449–478.

    Article  CAS  Google Scholar 

  9. Bigeleisen, J., M. W. Lee, and F. Mandel. 1973. Equilibrium isotope effects. Annu. Rev. Phys. Chem. 24: 407–440.

    Article  CAS  Google Scholar 

  10. Rabinowitz, J. L., J. S. Lafair, H. O. Strauss, and H. C. Allen, Jr. 1958. Carbon-isotope effects in enzyme systems. II. Studies with formic acid dehydrogenase. Biochim. Biophys. Acta 27: 544–548.

    Article  PubMed  CAS  Google Scholar 

  11. Bush, K., V. J. Shiner, Jr., and H. R. Mahler. 1973. Deuterium isotope effects on initial rates of the liver alcohol dehydrogenase reaction. Biochemistry 12: 4802–4805.

    Article  PubMed  CAS  Google Scholar 

  12. Rose, I. A. 1961. The use of kinetic isotope effects in the study of metabolic control. I. Degradation of glucose-l-D by the hexasemonophosphate pathway. J. Biol. Chem. 236: 603–609.

    PubMed  CAS  Google Scholar 

  13. Buchanan, D. L., A. Nakao, and G. Edwards. 1953. Carbon isotope effects in biological systems. Science 117: 541–545.

    Article  PubMed  CAS  Google Scholar 

  14. Abelson, P. H., and T. C. Hoering. 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. Natl. Acad. Sci. U.S.A. 47: 623–632.

    Article  PubMed  CAS  Google Scholar 

  15. Vree, T. B., J. P. M. C. Gorgels, A. Th. J. M. Muskens, and J. M. Van Rossum. 1971. Deuterium isotope effects in the metabolism of N-alkylsubstituted amphetamines in man Clin. Chim. Acta 34: 333–344.

    Article  PubMed  CAS  Google Scholar 

  16. Sheppard, C. W. 1962. Basic Principles of the Tracer Method. Wiley, New York.

    Google Scholar 

  17. Rescigno, A., and G. Segre. 1966. Drug and Tracer Kinetics. Ginn ( Blaisdell ), Boston.

    Google Scholar 

  18. Jacquez, J. A. 1972. Compartmental Analysis in Biology and Medicine. Elsevier, Amsterdam.

    Google Scholar 

  19. Jacquez, J. A. 1975. One-way fluxes of a-aminoisobutyric acid in Ehrlich ascites tumor cells. J. Gen. Physiol. 65: 57–83.

    Article  PubMed  CAS  Google Scholar 

  20. Arias, I. M., D. Doyle, and R. T. Schimke. 1969. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. Biol. Chem. 244: 3303–3315.

    PubMed  CAS  Google Scholar 

  21. Glass, R. D., and D. Doyle. 1972. On the measurement of protein turnover in animal cells. J. Biol. Chem. 247: 5234–5242.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacquez, J.A. (1980). Tracers in the Study of Membrane Processes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1718-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1718-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1720-4

  • Online ISBN: 978-1-4757-1718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics