Advertisement

The Nature and Limitations of Electron Microscopic Methods in Biology

  • J. David Robertson

Abstract

The purpose of this chapter is to acquaint those biological scientists unfamiliar with the methods of transmission electron microscopy with certain selected aspects of the general techniques that are used in routine practice by electron microscopists. This chapter is not intended to be an exhaustive coverage of the subject matter. For instance, the important topics of scanning microscopy, high voltage microscopy, and microprobe analysis are omitted. It is hoped that some feeling will be imparted for the power of the transmission techniques in general, and their inherent limitations in particular.

Keywords

Myelin Sheath Microscopic Method Biological Specimen Fracture Face Unit Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sten, K., and G. F. Bahr. 1970. Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J. Ultrastruct. Res. 31: 526–550.CrossRefGoogle Scholar
  2. 2.
    Grubb, D. T., and G. W. Groves. 1971. Rate of damage of polymer crystals in the electron microscope: Dependence on temperature and beam voltage. Phil. Mag. 24: 815–828.CrossRefGoogle Scholar
  3. 3.
    Downes, C. J., 1971. Biological Techniques in Electron Microscopy. Barnes Noble, New York.Google Scholar
  4. 4.
    Glauert, A. M., ed. 1975. Fixation, Dehydration and Embedding of Biological Specimens. North-Holland Publ., Amsterdam; American Elsevier, New York.Google Scholar
  5. 5.
    Glauert, A. M., ed. 1974. Practical Methods in Electron Microscopy, Vol. 3. North-Holland Pubi., Amsterdam; American Elsevier, New York.Google Scholar
  6. 6.
    Goodhew, P. J. 1972. Specimen preparation in materials science. In: Practical Methods in Electron Microscopy, Vol. 1, Part I. A. H. Glauert, ed. North- Holland Pubi., Amsterdam; American Elsevier, New York.Google Scholar
  7. 7.
    Agar, A. W., R. H. Anderson, and D. Chescoe. 1974. Principles and practice of electron microscopic operation. In: Practical Methods in Electron Microscopy. A. M. Glauert, ed. North-Holland Pubi., Amsterdam; American Elsevier, New York.Google Scholar
  8. 8.
    Haine, M. E. and V. E. Cosslet. 1961. The Electron Microscope. Spon, London.Google Scholar
  9. 9.
    Hall, C. E. 1966. Introduction to Electron Microscopy, 2nd ed. McGraw-Hill, New York.Google Scholar
  10. 10.
    Hayat, M. A. 1972. Basic Electron Microscopy Techniques. Van No strand Reinhold, Princeton, New Jersey.Google Scholar
  11. 11.
    Hayat, M. A. 1970. Principles and Techniques of Electron Microscopy. Biological Applications, Vol. I. Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  12. 12.
    Huxley, H. E., and A. Klug, eds. 1971. New Developments in Electron Microscopy. The Royal Society, London.Google Scholar
  13. 13.
    Koehler, J. K. 1973. Advanced Techniques in Biological Electron Microscopy. Springer-Verlag, Berlin and New York.CrossRefGoogle Scholar
  14. 14.
    Siegel, B. M., ed. 1964. Modern Developments in Electron Microscopy. Academic Press, New York.Google Scholar
  15. 15.
    Zworykin, V. K., G. A. Morton, E. G., Ramberg, J. Hillier, and A. W. Vance. 1945. Electron Optics and the Electron Microscope. Wiley, New York.Google Scholar
  16. 16.
    Erickson, H. P., and A. Klug. 1971. Measurement and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. R. Soc. Lond. B 261: 105–118.CrossRefGoogle Scholar
  17. 17.
    Goodenough, D. A. 1976. In vitro formation of gap junction vesicles. J. Cell Biol. 71: 220–231.Google Scholar
  18. 18.
    Goodenough, D. A. 1976. Channels transversing two junctional membranes and intervening “gap.” J. Cell Biol. 71: 334–335.Google Scholar
  19. 19.
    Bahr, G. F. 1954. Osmium tetroxide and unthenium tetroxide and their reactions with biologically imprtant substances. Exp. Cell Res. 7: 457–479.PubMedCrossRefGoogle Scholar
  20. 20.
    Burke, W., and H. Schiechl. 1968. A study of osmium tetroxide fixation. J. Histochem. Cytochem. 16:157- 161.Google Scholar
  21. 21.
    Criegee, von R. 1936. Osmium Saure-ester als mis-cherproducte beir oxydation. Ann. Chem. 522: 75–96.CrossRefGoogle Scholar
  22. 22.
    Fraenkel-Conrat, H., and H. S. Olcott. 1948. The reaction of formaldehyde with proteins. V. Cross linking between amino and primary amide or guanidyl groups. J. Am. Chem. Soc. 70: 2673–2684.PubMedCrossRefGoogle Scholar
  23. 23.
    Fraenkel-Conrat, H., and D. K. Mecham. 1949. The reaction of formaldehyde with proteins. J. Biol. Chem. 177: 477–486.PubMedGoogle Scholar
  24. 24.
    Fraenkel-Conrat, H., and H. S. Olcott. 1948. The reaction of formaldehyde with proteins. VI. Cross linking of amino groups with phenol, imidazole or indole groups. J. Biol. Chem. 174: 827–843.PubMedGoogle Scholar
  25. 25.
    Gaylarde, P., and I. Sarkany. 1968. Ruthenium tetroxide for fixing and staining cytoplasmic membranes. Science 161: 1157–1158.PubMedCrossRefGoogle Scholar
  26. 26.
    Gigg, R., and S. Payne. 1969. The reaction of glutaral-dehyde with tissue lipids. Chem. Phys. Lipids. 3: 292–295.PubMedCrossRefGoogle Scholar
  27. 27.
    Griffith, W. P. 1967. The Chemistry of the Rarer Platinum Metals. Wiley ( Interscience ), New York.Google Scholar
  28. 28.
    Hake, T. 1965. Studies of the reactions of 0s04 and KMn04 with amino acids, peptides and proteins. Lab. Invest. 14: 470–474.Google Scholar
  29. 29.
    Karnovsky, M. J. 1965. Formaidehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27:137 A.Google Scholar
  30. 30.
    Litman, R. B., and R. J. Barrnett. 1972. The mechanism of the fixation of tissue components of osmium tetroxide via hydrogen bonding. J. Ultrastruct. Res. 38: 63–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Luft, J. H. 1956. Permanganate—A new fixative for electron microscopy J. Biophys. Biochem. Cytol. 2: 799–801.PubMedCrossRefGoogle Scholar
  32. 32.
    Riemersma, J. C., and H. L. Booij. 1962. The reaction of osmium tetroxide with lecithin: Application of staining procedures. J. Histochem. Cytochem. 10: 89–95.CrossRefGoogle Scholar
  33. 33.
    Riemersma, J. C., and H. L. Booij. 1962. The reaction of osmium tetroxide with lecithin application of staining procedures. J. Histochem. Cytochem. 10: 89–95.CrossRefGoogle Scholar
  34. 34.
    Roozemond, R. C. 1969. The effect of fixation with formaldehyde and glutaraldehyde on the composition of phospholipids extracted from rat hypothalamus. J. Histochem. Cytochem. 17: 482–486.PubMedCrossRefGoogle Scholar
  35. 35.
    Sabatini, D. D., K. Bensch, and R. J. Barrnett. 1962. New means of fixation for electron microscopy and histochemistry. Anat. Rec. 142: 274.Google Scholar
  36. 36.
    Stoward, P. J., ed. 1973. Fixation in Histochemistry. Chapman Hall, London.Google Scholar
  37. 37.
    Wigglesworth, V. B. 1957. The use of osmium in the fixation and staining of tissues. Proc. R. Soc. Lond. (Biol.) 147: 185–199.CrossRefGoogle Scholar
  38. 38.
    Wood, J. G. 1973. The effect of glutaraldehyde and osmium on the proteins and lipids of myelin and mitochondria, Biochim. Biophys. Acta 329: 118–127.PubMedCrossRefGoogle Scholar
  39. 39.
    Nir, I., and M. O. Hall. 1974. The ultrastructure of lipid-depleted rod photoreceptor membranes. J. Cell Biol. 63: 587–598.PubMedCrossRefGoogle Scholar
  40. 40.
    Heckman, C. A., and R. J. Barnett. 1973. GACH: A water miscible, lipid-retaining embedding polymer for electron microscopy. J. Ultrastruct. Res. 42: 156–178.PubMedCrossRefGoogle Scholar
  41. 41.
    Pease, D. C., and R. G. Peterson. 1972. Polymerizable glutaraldehyde urea mixtures as polar, water-contain-ing embedding media. J. Ultrastruct. Res. 41: 133–159.PubMedCrossRefGoogle Scholar
  42. 42.
    Peterson, R. G., and D. C. Pease. 1972. Myelin embedded in polymerized glutaraldehyde urea. J. Ultrastruct. Res. 41: 115–132.PubMedCrossRefGoogle Scholar
  43. 43.
    Pease, D. C. 1973. Glycol methacrylate copolymerized with glutaraldehyde and urea as an embedment retaining lipids. J. Ultrastruct. Res. 45: 124–148.PubMedCrossRefGoogle Scholar
  44. 44.
    Fleischer, S., G. Brierley, H. Klaouwen, and D. G. Slautterback. 1962. The role of phospholipids in electron transfer. J. Biol. Chem. 237: 3264–3272.PubMedGoogle Scholar
  45. 45.
    Fleischer, S., B. Fleischer, and N. Stoeckenius. 1967. Fine structure of lipid depleted mitochondria. J. Cell Biol. 32: 193–208.PubMedCrossRefGoogle Scholar
  46. 46.
    Napolitano, B., F. LeBaron, and J. Scaletti. 1967. Preservation of myelin lamellar structure in the absence of lipid. J. Cell Biol. 34: 817–826.PubMedCrossRefGoogle Scholar
  47. 47.
    Robertson, J. D. 1960. The molecular structure and contact relationships of cell membranes. Prog. Biophys. 10: 343–417.Google Scholar
  48. 48.
    Criegee, von. R., B. Marchand, and H. Wannowius. 1942. Zur Kentnis der organischer Osmium-Verbindun-gen. Ann. Chem. 550: 99–133.CrossRefGoogle Scholar
  49. 49.
    Knutton, S., and J. D. Robertson. 1976. Regular structures in membranes: The lumenal plasma membrane of the cow urinary bladder. J. Cell Sci. 22: 355–370.PubMedGoogle Scholar
  50. 50.
    Revel, J. P., and M. J. Karnovsky. 1967. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Luft, G. S. 1971. Ruthenium red and violet. I. Chemistry purification, methods of useful electron microscopy and mechanism of fraction. Anat. Rec. 171: 347–368.PubMedCrossRefGoogle Scholar
  52. 52.
    Luft, G. S. 1971. II. Fine structural localization in animal tissues. Anat. Rec. 171: 369–416.PubMedCrossRefGoogle Scholar
  53. 53.
    Luft, G. S. 1971. III. Fine structures of the plasma membrane extraneous coats in amoebae A. proteus and Chaos chaos. Anat. Rec. 171: 417–442.Google Scholar
  54. 54.
    Hall, C. E. 1955. Electron densitometry of stained virus particles. J. Biophys. Biochem. Cytol. 1: 1–2.PubMedCrossRefGoogle Scholar
  55. 55.
    Farrant, J. L. 1954. An electron microscopic study of Ferritin. Biochim. Biophys. Acta 13: 569–576.PubMedCrossRefGoogle Scholar
  56. 56.
    Huxley, H. E. 1957. Some observations on the structure of tobacco mosaic virus. In: Proceedings of the Stockholm Conference on Electron Microscopy, 1956. Almquist Wiksell, Stockholm, pp. 260–261.Google Scholar
  57. 57.
    Huxley, H. E., and J. G. Zubay. 1960. Electron microscopic observations on the structure of microsomal particles from E. coli. J. Mol. Biol. 2: 10–18.CrossRefGoogle Scholar
  58. 58.
    Brenner, S., and R. W. Home. 1959. Biochim Biophys. Acta 34: 103–110.PubMedCrossRefGoogle Scholar
  59. 59.
    Hashemeyer R. H., and E. de Harven. 1974. Electron microscopy of enzymes. Annu. Rev. Biochem. 43: 274–301.Google Scholar
  60. 60.
    Henderson, R., and P. N. T. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Henderson, R. 1975. The structure of the purple membrane of Halobacterium halobium: Analysis of the x-ray diffraction pattern. J. Mol. Biol. 93: 123–138.PubMedCrossRefGoogle Scholar
  62. 62.
    Unwin, P. N. T., and R. Henderson. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94: 425–440.PubMedCrossRefGoogle Scholar
  63. 63.
    Glaeser, R. M. 1975. Radiation damage and biological electron microscopy. In: Physical Aspects of Electron Microscopy andMicrobeam Analysis. B. Siegel and D. R. Beaman, eds. Wiley, New York.Google Scholar
  64. 64.
    Glaeser, R. M., and L. W. Hobbs. 1975. Radiation damage in stained catalase at low temperature. J. Mi-crosc. 103, Pt. 2: 209–214.Google Scholar
  65. 65.
    Williams, R. C., and R. W. G. Wyckoff. 1944. The thickness of electron microscopic objects. J. Appl. Phys. 15: 712–716.CrossRefGoogle Scholar
  66. 66.
    Williams, R. C., and R. W. G. Wyckoff. 1945. Scientific apparatus and laboratory methods: Electron shadow micrography of the tobacco mosaic virus protein. Science 101: 594–596.PubMedCrossRefGoogle Scholar
  67. 67.
    Williams, R. C., and R. W. G. Wyckoff. 1946. Application of metallic shadow-casting to microscopy. J. Appl. Phys. 17: 23–33.CrossRefGoogle Scholar
  68. 67a.
    Steere, R. L. 1957. Electron microscopy of structural detail in frozen biological specimens. J. Biophys. Biochem. Cytol. 3: 45–60.PubMedCrossRefGoogle Scholar
  69. 68.
    Moor, H., and K. Muhlethaler. 1963. Fine structure in freeze-etched yeast cells. J. Cell Biol. 17: 609–628.PubMedCrossRefGoogle Scholar
  70. 69.
    Moor, M., K. Muhlethaler, H. Waldner, and A. Frey- Wyssling. 1961. A new freezing ultramicrotome, J. Biophys. Biochem. Cytol. 10: 1–14.PubMedCrossRefGoogle Scholar
  71. 70.
    Abermann, R., and L. Bachman. 1969. Elektronenmikroskopische Beschattung mit hoher aufiosung. Naturwissenschaften 56: 324.CrossRefGoogle Scholar
  72. 71.
    Abermann, R., M. M. Salpeter, and L. Bachman. 1970. High resolution shadowing. In: Principles and Techniques of Electron Microscopy, Vol. II. M. A. Hayat, ed. Van Nostrand-Reinhold, pp. 197–217. Princeton, New Jersey.Google Scholar
  73. 72.
    Bachmann, R., R. A. Abermann, and H. P. Zingsheim. 1969. Hochauflosende Gefrieratzung. Histochimie 20: 133–142.PubMedCrossRefGoogle Scholar
  74. 73.
    Bachmann, L., W. H. Orr, J. N. Rhodin, and B. M. Siegel. 1960. Determination of surface structure using ultra-high vacuum replication. J. Appl. Phys. 31: 1458–1462.CrossRefGoogle Scholar
  75. 74.
    Basu, S., and D. F. Parsons. 1976. New wet-replication technique. I. Replication of water droplets. J. Appl. Phys. 47: 741–751.CrossRefGoogle Scholar
  76. 75.
    Bradley, D. F. 1958. Simultaneous evaporation of platinum and carbon and possible use in high-resolution shadow-casting for the electron microscope. Nature 181: 875–877.PubMedCrossRefGoogle Scholar
  77. 76.
    Bradley, D. E. 1960. Study of background structure in platinum/carbon shadowing deposits. B. J. Appl. Phys. 11: 506–509.CrossRefGoogle Scholar
  78. 77.
    Moor, H. 1971. Recent progress in the freeze-etching technique. Philos. Trans. R. Soc. Lond. (Biol.) 261: 121–131.CrossRefGoogle Scholar
  79. 78.
    Branton, D., and R. B. Park. 1967. Subunits in chloro-plast lamellar. J. Ultrstruct. Res. 19: 283–303.CrossRefGoogle Scholar
  80. 79.
    Branton, D., S. Bullivant, N. B. Gilula, M. J. Karnovsky, H. Moor, K. Muhlethaler, L. A. Staehelin, R. L. Steere, and R. S. Weinstein. 1975. Freeze-etching nomenclature. Science 190:54–56.Google Scholar
  81. 80.
    Margaritis, L. H., A. Elgsaeter, and D. Branton. 1977. Rotary replication for freeze-etching. J. Cell Biol. 72: 47–56.PubMedCrossRefGoogle Scholar
  82. 81.
    Bassett, G. D. 1958. A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Phil. Mag. 8: 1042–1045.CrossRefGoogle Scholar
  83. 82.
    Bassett, G. A., J. W. Menter, and D. W. Pashley. 1959. The nucleation, growth and microstructure of thin films: A review. In: Proceedings of the International Conference on Structure and Properties of Thin Films. C. A. Neuggehauer, J. B. Newkirk, and D. A. Vermle-yea, eds. Wiley, New York. pp. 46–52.Google Scholar
  84. 83.
    Reimer, L., and C. Schulte. 1966. Elektronen mikroskopische oberflachabdrucke und ihr auflosungs vermögen. Naturwissenschaften 53: 489–497.PubMedCrossRefGoogle Scholar
  85. 84.
    Dushman, S., and J. M. Lafferty. 1949. Scientific Foundations of Vacuum Techniques, 2nd ed. Wiley, New York.Google Scholar
  86. 85.
    Dickey, J. M., M. Strongin, and O. F. Kammerer. 1971. Studies of thin films of Nb3 Sn on Nb. J. Appl. Phys. 42: 5808–5820.CrossRefGoogle Scholar
  87. 86.
    Zingsheim, P. H., R. Abermann, and L. Bachmann. 1970. Shadow casting and heat damage. Proceedings of the 7th Congress for Electron Microscopy, Grenoble, Vol. I. pp. 411–412.Google Scholar
  88. 87.
    Watt, I. M. 1974. Reduction in specimen level heating during carbon deposition by the Bradley technique. Proceedings of the 8th International Congress for Electron Microscopy, Vol. I. pp. 402–403.Google Scholar
  89. 88.
    Rosenkranz, J. 1975. The course of temperature variation in an object during the freeze-etch procedure. Arzneim. Forsch. 25: 449–458.Google Scholar
  90. 89.
    Meryman, H. T. 1957. Physical limitations of the rapid freezing method. Proc. R. Soc. Lond. (Biol.) 147: 452–459.CrossRefGoogle Scholar
  91. 90.
    Horn, H. R. F. 1962. Thermische bedampfung ohne licht und warmesstrahlungsbelastung des Objektes. Proceedings of the Fifth International Congress for Electron Microscopy, Philadelphia, Vol. I. p. A9.Google Scholar
  92. 91.
    Aldrian, A. R., and H. R. F. Horn. 1974. Trennung von Dampf und Warmostrahlung wahrend des aufdampfens beim thermischen bedampfen empfindlicher Objekte,Proceedings of the Eighth International Congress for Electron Microscopy, Canberra, Vol I. pp. 406–407.Google Scholar
  93. 92.
    Harada, Y., T. Taoka, M. Watanabe, M. Ohara, T. Kobayashi, and N. Uyeda. 1972. Effects of accelerating voltage and specimen temperature on radiation damage of hexadecachloro-copper-phthalocyanine. In: Proceedings of the 30th Annual Meeting of the Electron Microscopy Society of America. C.J. Arceneaux, ed. Claitors, Baton Rouge, p. 686.Google Scholar
  94. 93.
    Siegel, G. 1972. Der Einfluss tiefer Temperaturen auf die Strahlenschaedigung von organischen Kristallen durch 100 keV-electronen. Z. Naturforsch. A27: 325–332.Google Scholar
  95. 94.
    Dubochet, J. 1975. Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J. Ultrastruct. Res. 52: 276–288.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. David Robertson
    • 1
  1. 1.Department of AnatomyDuke University Medical CenterDurhamUSA

Personalised recommendations