Membrane Proteins: Structure and Arrangement in the Membrane

  • Guido Guidotti


The membranes of a cell have the principal function of setting the boundaries between the cell and the environment and between compartments within the cell. These boundaries prevent the movement of all polar solutes from one compartment to another, unless such movement is required for biological activity; under these circumstances, special transport systems are required. Thus membranes can be considered as structures which are selectively permeable. The barrier to movement of polar solutes across the membrane is provided by one of the two major components of the membrane: the lipids. The other major component of the membrane, the proteins, provides the permeability function. Membrane proteins also determine most of the other properties of a membrane: They carry the determinants of specificity which distinguish one cell from another and allow for recognition between cells; they determine the shape and architecture of the membrane; they are the receptors for information about the environment and relay that information to other parts of the cell; and they are enzymes with a precise compartmental localization.


Human Erythrocyte Intrinsic Protein Peptide Group Polar Solute Extrinsic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guidotti, G. 1972. Membrane Proteins. Annu. Rev. Biochem. 41: 731–752.PubMedCrossRefGoogle Scholar
  2. 2.
    Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805–833.PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke, S. 1975. The size and detergent binding of membrane proteins. J. Biol. Chem. 250: 5459–5469.PubMedGoogle Scholar
  4. 4.
    Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Marchesi, V. T., H. Furthmayr, and M. Tomito. 1976. The red cell membrane. Annu. Rev. Biochem. 45: 667–698.PubMedCrossRefGoogle Scholar
  6. 6.
    Bretscher, M. S. and M. C. Raff. 1975. Mammalian plasma membranes. Nature 258: 43–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Graham, J. M., R. O. Hynes, E. A. Davidson, and D. F. Bainton. 1975. The location of proteins labeled by the 125I-lactoperoxidase system in the NIL 8 hamster fibroblast. Cell 4: 353–366.PubMedCrossRefGoogle Scholar
  8. 8.
    Elgsaeter, A., D. M. Shotton, and D. Branton. 1976. Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. Biochim. Biophys. Acta 426: 101–122.PubMedCrossRefGoogle Scholar
  9. 9.
    Schechter, N. M., M. Sharp, J. A. Reynolds, and C. Tanford. 1976. Erythrocyte spectrin-purification in de-oxycholate and preliminary characterization. Biochemistry 15: 1897–1904.PubMedCrossRefGoogle Scholar
  10. 10.
    Sheetz, M. P., R. G. Painter, and S. J. Singer. 1976. Relationship of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry 15: 4486–4492.PubMedCrossRefGoogle Scholar
  11. 11.
    Guthrow, C. E., J. E. Allen, and H. Rasmussen. 1972. Phosphorylation of an endogenous membrane protein by an endogeneous, membrane-associated cyclic adenosine 3’,5’-monophosphate-dependent protein kinase in human erythrocyte ghosts. J. Biol. Chem. 247: 8145–8153.PubMedGoogle Scholar
  12. 12.
    Hartwig, J. H., and T. P. Stossel. 1975. Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages. Biol. Chem. 250: 5696–5705.Google Scholar
  13. 13.
    Shiguta, Y., H. Shiguta, M. Gallo, P. Davies, I. Pastan, and M. S. Lewis. 1976. Purification and properties of filamin, an actin binding protein from chicken gizzard. J. Biol. Chem. 251: 6562–6567.Google Scholar
  14. a.Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67: 835–851.CrossRefGoogle Scholar
  15. 14.
    Enock, H. G., A. Catala, and P. Strittmatter. 1976. Mechanism of rat liver microsomal stearyl-CoA de-saturase. J. Biol. Chem. 251: 5095–5103.Google Scholar
  16. 15.
    Dahl, J. L., and L. E. Hokin. 1974. The sodium potassium adenosine triphosphatase. Annu. Rev. Biochem. 43: 327–356.PubMedCrossRefGoogle Scholar
  17. 16.
    McLennan, D. H., and P. C. Holland. 1975. Calcium transport in sarcoplasmic reticulum. Annu. Rev. Biophys. Bioeng. 4:3ll-404.Google Scholar
  18. 17.
    Ho, M. K., and G. Guidotti. 1975. A membrane protein from human erythrocytes involved in anion exchange. J. Biol. Chem. 250: 675–683.PubMedGoogle Scholar
  19. 18.
    Drickamer, L. K. 1976. Fragmentation of the 95,000- dalton transmembrane polypeptide in human erythrocyte membranes. J. Biol. Chem. 251: 5115–5123.PubMedGoogle Scholar
  20. 19.
    Cone, R. A. 1975. Transductive coupling in the visual system. In: Functional Linkage in Biomolecular Systems. F. O. Schmitt, D. M. Schneider, and D. M. Crothers, eds. Rowen Press, New York. pp. 234–246.Google Scholar
  21. 20.
    Karlin, A. 1975. The acetylcholine receptor: Progress report. Life Sci. 14: 1385–1415.CrossRefGoogle Scholar
  22. 21.
    Guidotti, G. 1976. The structure of membrane transport systems. Trends Biochem. Sci. 1: 11–13.CrossRefGoogle Scholar
  23. 22.
    Henderson, R., and P. N. T. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32.PubMedCrossRefGoogle Scholar
  24. 23.
    Kyte, J. 1975. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. J. Biol. Chem. 250: 7443–7449.PubMedGoogle Scholar
  25. 24.
    Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59: 351–357.PubMedCrossRefGoogle Scholar
  26. 25.
    Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12: 88–118.PubMedCrossRefGoogle Scholar
  27. 26.
    Palade, G. E. 1975. Intracellular aspects of the process of protein synthesis. Science 189: 347–358.PubMedCrossRefGoogle Scholar
  28. 27.
    Bretscher, M. S. 1973. Membrane structure: Some general principles. Science 181: 622–629.PubMedCrossRefGoogle Scholar
  29. 28.
    Kresheck, G. C., and I. M. Klotz. 1969. The thermodynamics of transfer of amides from an apolar to an aqueous solution. Biochemistry 8: 8–12.CrossRefGoogle Scholar
  30. 29.
    Steck, T. L., B. Ramos, and E. Strapozon. 1976. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15: 1154–1161.CrossRefGoogle Scholar
  31. 30.
    Jenkins, R. E., and M. J. A. Tanner. 1975. The major human erythrocyte membrane protein. Biochem. J. 147: 393–399.PubMedGoogle Scholar
  32. 31.
    Jenkins, R. E., and M. J. A. Tanner. 1976. The structure of the major protein of the human erythrocyte membrane. Biochem. J. 161: 134–147.Google Scholar
  33. 32.
    Schneider, A. S., M. J. T. Schneider, and K. Rosen-heck. 1970. Optical activity of biological membranes: Scattering effects and protein conformation. Proc. Natl. Acad. Sci. U.S.A. 66: 793–798.PubMedCrossRefGoogle Scholar
  34. 33.
    McLachlan, A. D., and M. Stewart. 1975. Tropomyosin coiled-coil interactions: Evidence for an unstag-gered structure. J. Mol. Biol. 98: 293–304.PubMedCrossRefGoogle Scholar
  35. 34.
    Clothia, C. 1976. The nature of accessible and buried surfaces in proteins. J. Mol. Biol. 105: 1–14.CrossRefGoogle Scholar
  36. 35.
    Murphy, A. J. 1976. Crosslinking of the sarcoplasmic reticulum ATPase protein. Biochem. Biophys. Res. Commu. 70: 160–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Guido Guidotti
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations