Dynamics of Lipids in Biomembranes

  • T. E. Thompson
  • C. Huang


The hypothesis underlying much of today’s research on biological membranes was formulated by Singer and Nicolson in 1972.(1) This construct, known as the fluid mosaic hypothesis, contains two essential elements. The first of these, a derivative of the Danielle model,(2) requires that the lipid component of the membrane be a bilayer in structure and contribute to the membrane its basic barrier properties. Although the lipid molecules are confined to the bilayer, they are free to exhibit a variety of motional modes such as vibration, rotation, and translation. The second element of the fluid mosaic hypothesis deals with the disposition of the protein components of the membrane. These components are immersed to varying degrees in the lipid bilayer. Some may be only superficially associated with the polar faces of the bilayer, some embedded in its hydrophobic core, and others may completely span the bilayer. The fluid nature of the bilayer permits the protein components to move in both rotational and translational modes. These diffusional motions of the individual protein components may give rise to time-dependent patterns in the compositional mosaic.


Acyl Chain Biological Membrane Hydrocarbon Chain Nuclear Magnetic Resonance Study Fatty Acyl Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.CrossRefPubMedGoogle Scholar
  2. 2.
    Danielle, J. F., and H. Davson. 1935. A contribution to the theory of the permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508.CrossRefGoogle Scholar
  3. 3.
    Silbert, D. F. 1975. Genetic modification of membrane lipid. Annu. Rev. Biochem. 44: 315.CrossRefPubMedGoogle Scholar
  4. 4.
    Bangham, A. D., M. M. Standish, and J. C. Watkins. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13: 238–252.CrossRefPubMedGoogle Scholar
  5. 5.
    Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1962. Reconstitution of excitable cell membrane structure in vitro. Circulation 26: 1167–1171.CrossRefGoogle Scholar
  6. 6.
    Huang, C. 1969. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8: 344–352.CrossRefPubMedGoogle Scholar
  7. 7.
    Bangham, A. D., J. De Gier, and G. D. Greville. 1967. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Phys. Lipids 1: 225–246.CrossRefGoogle Scholar
  8. 8.
    Huang, C., and T. E. Thompson. 1974. Model membranes: Preparation of homogeneous single-walled phosphatidylcholine vesicles. In: Methods in Enzy-mology, Vol. 32. S. Fleischer, L. Packer, and R. W. Estabrook, eds. Academic Press, New York. pp. 485–489.Google Scholar
  9. 9.
    Luzzati, V. 1968. X-ray diffraction studies on lipid— water systems. In: Biological Membranes. D. Chapman, ed. Academic Press, New York. pp. 71–123.Google Scholar
  10. 10.
    Tanford, C. 1973. The Hydrophobic Effect. Wiley, New York. pp. 1–94.Google Scholar
  11. 11.
    Israelachvili, J. N., D. J. Mitchell, and B. W. Nin-ham. 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II 72: 1525–1568.CrossRefGoogle Scholar
  12. 12.
    Dickerson, R. E., and I. Geis. 1969. The Structure and Action of Proteins. Harper, New York. pp. 8–13.Google Scholar
  13. 13.
    Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. Wiley (Interscience) New York. pp. 192— 196.Google Scholar
  14. 14.
    Lagaly, G., and A. Weiss. 1971. Experimental evidence for kink formation. Angew. Chem. Int. Ed. 10: 558–559.CrossRefGoogle Scholar
  15. 15.
    Trauble, H. 1971. The movement of molecules across lipid membranes: A molecular theory. J. Membrane Biol. 4: 193–209.CrossRefGoogle Scholar
  16. 16.
    Lippert, J. L., and W. L. Peticolas. 1972. Raman active vibrations in long-chain fatty acids and phospholipid sonicates. Biochim. Biophys. Acta 282: 8–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Lippert, J. L., L. E. Gorczyca, and G. Meiklejohn.Google Scholar
  18. 1975.
    A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts. Biochim. Biophys. Acta 382:51–57.Google Scholar
  19. 18.
    Mendelsohn, R., S. Sunder, and H. J. Bernstein.Google Scholar
  20. 1976.
    The effect of sonication on the hydrocarbon chain conformation in model membrane systems: A Raman spectroscopic study. Biochim. Biophys. Acta 419: 563–569.Google Scholar
  21. 19.
    Horwitz, A. F., M. P. Klein, D. M. Michaelson, and S. J. Kohler. 1972. Magnetic resonance studies of membrane and model membrane systems. Ann. N.Y. Acad. Sci. 222: 468–487.CrossRefGoogle Scholar
  22. 20.
    Seelig, A., and J. Seelig. 1974. The dynamic structure of fatty acyl chains in a phospholipid bilayer. Biochemistry 13: 4839–4845.CrossRefPubMedGoogle Scholar
  23. 21.
    Kohler, S. J., A. F. Horwitz, and M. P. Klein. 1972. Magnetic resonance studies of membrane and model membrane systems. A comparison of yeast and egg lecithin dispersions. Biochem. Biophys. Res. Com-mun. 49: 1414–1421.CrossRefGoogle Scholar
  24. 22.
    Barton, P. G., and F. D. Gunstone. 1975. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. J. Biol. Chem. 256: 4470–4476.Google Scholar
  25. 23.
    Shapiro, E., and S. Ohki. 1974. The interaction energy between hydrocarbon chains. J. Colloid Interface Sci. 47: 38–49.CrossRefGoogle Scholar
  26. 24.
    Huang, C. 1977. A structural model for the choles-terol-phosphatidylcholine complexes in bilayer membranes. Lipids 12: 348–356.CrossRefPubMedGoogle Scholar
  27. 25.
    Batchelor, J. G., J. H. Prestegard, R. J. Cushley, and S. R. Lipsky. 1972. Conformational analysis of lecithin in vesicles by 13C-NMR. Biochem. Biophys. Res. Commun. 48: 70–75.CrossRefPubMedGoogle Scholar
  28. 26.
    Doddrell, D., and A. Allerhand. 1971. Segmental motion in liquid 1-decanol. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93: 1558–1559.CrossRefGoogle Scholar
  29. 27.
    Levine, Y. K., N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. 1972.13C-NMR relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids. Biochemistry 11: 1416–1421.Google Scholar
  30. 28.
    Sears, B. 1975.13C-NMR studies of egg phosphatidylcholine. J. Membr. Biol. 20: 59–73.Google Scholar
  31. 29.
    Gent, M. P. N., and J. H. Prestegard. 1974. Comparison of 13C spin-lattice relaxation times in phospholipid vesicles and multilayers. Biochem. Biophys. Res. Commun. 58: 549–555.CrossRefPubMedGoogle Scholar
  32. 30.
    Sears, B., W. Hutton, and T. E. Thompson. 1974. 13C-NMR studies on bilayers formed from synthetic di-10-methyl-stearoylphosphatidylcholine enriched with 13C in the TV-methyl carbons. Biochem. Biophys. Res. Commun. 60: 1141–1147.Google Scholar
  33. 31.
    Stockton, G. W., C. F. Polnaszek, L. C. Leitch, A. P. Tulloch, and I. C. P. Smith. 1974. A study of mobility and order in model membranes using 2H NMR relaxation rates and quadrupole splittings of specifically deuterated lipids. Biochem. Biophys. Res. Commun. 60: 844–850.CrossRefPubMedGoogle Scholar
  34. 32.
    Huang, C. 1976. Roles of carbonyl oxygens at the bilayer interface in phospholipid-sterol interaction. Nature 259: 242–244.CrossRefPubMedGoogle Scholar
  35. 33.
    Kroon, P. A., M. Kainosho, and S. I. Chan. 1975. State of molecular motion of cholesterol in lecithin bilayers. Nature 256: 582–584.CrossRefPubMedGoogle Scholar
  36. 34.
    Phillips, M. C., E. G. Finer, and H. Hauser. 1972. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes. Biochim. Biophys. Acta 290: 397–402.CrossRefPubMedGoogle Scholar
  37. 35.
    Hitchock, P. B., R. Mason, M. Thomas, and G. G. Shipley. 1974. Structural chemistry of 1,2-dilauroyl- DL-phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids. Proc. Natl. Acad. Sci. U.S.A. 71: 3036–3039.CrossRefGoogle Scholar
  38. 36.
    Zull, J. E., and A. J. Hopfinger. 1969. Potential energy fields about nitrogen in choline and ethanol-amine: Biological function at cellular surfaces. Science 165: 512–513.CrossRefPubMedGoogle Scholar
  39. 37.
    Pauling, P. 1968. The structure of molecules active in cholinergic systems. In: Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, eds. Freeman, San Francisco, pp. 555–565.Google Scholar
  40. 38.
    Gaily, H.-V., W. Niederberger, and J. Seelig. 1975. Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry 14: 3647–3652.CrossRefGoogle Scholar
  41. 39.
    Yeagle, P. L., W. C. Hutton, C. Huang, and R. B. Martin. 1975. Headgroup conformation and lipid-cho-lesterol association in phosphatidylcholine vesicles: A 31P nuclear Overhauser effect study. Proc. Natl. Acad. Sci. U.S.A. 72: 3477–3481.CrossRefPubMedGoogle Scholar
  42. 40.
    Griffin, R. G. 1976. Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin. J. Am. Chem. Soc. 98: 851–853.CrossRefPubMedGoogle Scholar
  43. 41.
    Cain, J., G. Santillan, and J. K. Blasie. 1972. Molecular motion in membranes as indicated by X-ray diffraction. In: Membrane Research. C. F. Fox, ed. Academic Press, New York. pp. 3–14.Google Scholar
  44. 42.
    Jendrasiak, G. L., and J. H. Hasty. 1974. The hydration of phospholipids. Biochim. Biophys. Acta 337: 79–91.CrossRefPubMedGoogle Scholar
  45. 43.
    Jendrasiak, G. L., and J. H. Hasty. 1974. The electrical conductivity of hydrated phospholipids. Biochim. Biophys. Acta 348: 45–54.CrossRefPubMedGoogle Scholar
  46. 44.
    Demel, R. A., K. R. Bruckdorfer, and L. L. M. Van Deenen. 1972. The effect of sterol structure on the permeability of liposomes to glucose glycerol and Rb+. Biochim. Biophys. Acta 255: 321–330.CrossRefPubMedGoogle Scholar
  47. 45.
    Ghosh, D., M. A. Williams, and J. Tinoco. 1973. The influence of lecithin structure on their monolayer behavior and interactions with cholesterol. Biochim. Biophys. Acta 291: 351–362.CrossRefPubMedGoogle Scholar
  48. 46.
    Cullis, P. R., B. deKruyff, and R. E. Richards. 1976. Factors affecting the motion of the polar headgroup in phospholipid bilayers. A 31P NMR study of unsoni-cated phosphatidylcholine liposomes. Biochim. Biophys. Acta 426: 433–446.CrossRefPubMedGoogle Scholar
  49. 47.
    Kohler, S. J., and M. P. Klein. 1976.31P shift tensors: Headgroup dynamics in membranes. VII International Conference on Magnetic Resonance in Biological Systems. Abstr. TH-P25:193.Google Scholar
  50. 48.
    Lee, A. G. 1975. Functional properties of biological membranes: A physical-chemical approach. Prog. Biophys. Mol. Biol. 29: 3–56.CrossRefPubMedGoogle Scholar
  51. 49.
    Devaux, P., and H. M. McConnell. 1972. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94: 4475–4481.CrossRefPubMedGoogle Scholar
  52. 50.
    Trauble, H., and E. Sackmann. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structural studies of a steroid-lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94: 4499–4510.CrossRefPubMedGoogle Scholar
  53. 51.
    Brulet, P., and H. M. McConnell. 1975. Kinetics of phase equilibrium in a binary mixture of phospholipids. Proc. Natl. Acad. Sci. U.S.A. 72: 1451–1455.CrossRefPubMedGoogle Scholar
  54. 52.
    Lee, A. G., N. J. M. Birdsall, and J. C. Metcalfe. 1973. Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by NMR. Biochemistry 12: 1650–1659.CrossRefPubMedGoogle Scholar
  55. 53.
    Ulmius, J., H. Wennerstrom, G. Lindblom, and G. Arvidson. 1975. Proton NMR bandshape studies of lamellar liquid crystals and gel phases containing lecithins and cholesterol. Biochim. Biophys. Acta 389: 197–202.CrossRefPubMedGoogle Scholar
  56. 54.
    Bretscher, M. S. 1972. Phosphatidylethanolamine: Differential labeling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J. Mol. Biol. 71: 523–528.CrossRefPubMedGoogle Scholar
  57. 55.
    Bretscher, M. S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature (New Biol.) 236: 11–12.CrossRefGoogle Scholar
  58. 56.
    Godesky, S. E., and G. V. Marinetti. 1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 50: 1027–1031.CrossRefGoogle Scholar
  59. 57.
    Verkleij, A. J., R. F. A. Zwaal, B. Roelofsen, P. Comfurius, D. Kostelijn, and L. L. M. van Deenen. 1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323: 178–193.CrossRefPubMedGoogle Scholar
  60. 58.
    Renooij, W., L. M. G. van Golde, R. F. A. Zwall, and L. L. M. van Deenen. 1976. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. Evidence for flip-flop of lecithin. Eur. J. Biochem. 61: 53–58.CrossRefPubMedGoogle Scholar
  61. 59.
    Bloj, B., and D. B. Zilversmit. 1976. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1277–1283.CrossRefPubMedGoogle Scholar
  62. 60.
    Rothman, J. E., D. K. Tsai, E. A. Dawidowicz, and J. Lenard. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15: 2361–2370.CrossRefPubMedGoogle Scholar
  63. 61.
    Smith, H. G., R. Fager, and B. J. Litman. 1977. Light activated calcium release from sonicated bovine retinal rod outer segment discs. Biochemistry 16: 1399–1405.CrossRefPubMedGoogle Scholar
  64. 62.
    Rothman, J. E., and E. P. Kennedy. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110: 603–618.CrossRefGoogle Scholar
  65. 63.
    Kornberg, R. D., and H. M. McConnell. 1971. In-side-outside transitions of phospholipid in vesicle membranes. Biochemistry 10: 1111–1120.CrossRefPubMedGoogle Scholar
  66. 64.
    Roseman, M., B. J. Litman, and T. E. Thompson. 1975. Transbilayer exchange of phosphatidylethanolamine for phosphatidylcholine and A/-acetimidoyl-phosphatidylethanolamine in single-walled bilayer vesicles. Biochemistry 14: 4826–4830.CrossRefPubMedGoogle Scholar
  67. 65.
    Johnson, L. W., M. E. Hughes, and D. B. Zilversmit. 1975. Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes. Biochim. Biophys. Acta 375: 176–185.CrossRefPubMedGoogle Scholar
  68. 66.
    Rothman, J. E., and E. A. Dawidowicz. 1975. Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exchange protein measurement of inside-outside transitions. Biochemistry 14: 2809–2816.CrossRefPubMedGoogle Scholar
  69. 67.
    Wirtz, K. W. A., H. H. Kamp, and L. L. M. van Deenen. 1972. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim. Biophys. Acta 274: 606–617.CrossRefPubMedGoogle Scholar
  70. 68.
    Kamp, H. H., K. W. A. Wirtz, and L. L. M. van Deenen. 1973. Some properties of phosphatidylcholine exchange protein purified from beef liver. Biochim. Biophys. Acta 318: 313–325.CrossRefGoogle Scholar
  71. 69.
    Shaw, J. M., B. Lentz, and T. E. Thompson. 1977. Proton NMR study of the decay of bilayer compositional asymmetry generaged by a phosphatidylcholine exchange protein. Biochemistry 16: 4156–4163.CrossRefPubMedGoogle Scholar
  72. 70.
    Poznansky, M., and Y. Lange. 1976. Transbilayer movement of cholesterol in dipalmitoyllecithin-cho-lesterol vesicles. Nature 259: 420–421.CrossRefPubMedGoogle Scholar
  73. 71.
    Smith, R. J. M., and C. Green. 1974. The rate of cholesterol “flip-flop” in lipid bilayers and its relation to membrane sterol pools. FEBS Lett. 42: 108–111.CrossRefPubMedGoogle Scholar
  74. 72.
    Huang, C., J. P. Charlton, C. I. Shyr, and T. E. Thompson. 1970. Studies on phosphatidylcholine vesicles with thiocholesterol and a thiocholesterol-linked spin label incorporated in the vesicle wall. Biochemistry 9: 3422–3526.CrossRefPubMedGoogle Scholar
  75. 73.
    McNamee, M. G., and H. M. McConnell. 1973. Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry 12: 2951–2958.CrossRefPubMedGoogle Scholar
  76. 74.
    Grant, C. W. M., and H. M. McConnell. 1973. Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc. Natl. Acad. Sci. U.S.A. 70: 1238–1240.CrossRefGoogle Scholar
  77. 75.
    Huestis, W. H., and H. M. McConnell. 1974. A functional acetylcholine receptor in the human erythrocyte. Biochem. Biophys. Res. Commun. 57: 726–732.CrossRefPubMedGoogle Scholar
  78. 76.
    Rousselet, A., C. Guthmann, J. Matricon, A. Bienvenue, and P. E. Devaux. 1976. Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. I. Human red blood cells. Biochim. Biophys. Acta 426: 357–371.CrossRefPubMedGoogle Scholar
  79. 77.
    Rousselet, A., A. Colbeau, P. M. Vignais, and P. F. Devaux. 1976. Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. II. Inner mitochondrial membrane of rat liver. Use of phosphatidylcholine exchange protein. Biochim. Biophys. Acta 526: 372–384.Google Scholar
  80. 78.
    Lenard, J., and J. E. Rothman. 1976. Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus. Proc. Natl. Acad. Sci. U.S.A. 73: 391–395.CrossRefPubMedGoogle Scholar
  81. 79.
    Tanford, C. 1961. Physical Chemistry of Macromole-cules. Wiley, New York pp. 324–328.Google Scholar
  82. 80.
    Cogan, U., M. Schinitzky, G. Weber, andT. Nishida. 1973. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluroescent probes. Biochemistry 12: 521–528.CrossRefPubMedGoogle Scholar
  83. 81.
    Shinitzky, M., and Y. Barenholz. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249: 2651–2657.Google Scholar
  84. 82.
    Shinitzky, M., A. C. Dianoux, C. Gitler, and G. Weber. 1971. Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluroescent probes. I. Synthetic micelles. Biochemistry 10: 2106–2113.CrossRefPubMedGoogle Scholar
  85. 83.
    Lentz, B. R., Y. Barenholz, and T. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes. Biochemistry 15: 4521–4528.CrossRefPubMedGoogle Scholar
  86. 84.
    Lentz, B. R., Y. Barenholz, and T. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. II. Two-component phosphatidylcholine liposomes. Biochemistry 15: 4529–4537.CrossRefPubMedGoogle Scholar
  87. 85.
    Shinitzky, M., and M. Inbar, 1974. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J. Mol. Biol. 85: 603–615.Google Scholar
  88. 86.
    Soloman, A. K. 1974. Apparent viscosity of human red cell membranes. Biochim. Biophys. Acta 373: 145–149.CrossRefGoogle Scholar
  89. 87.
    Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (New Biol.) 236: 39–43.Google Scholar
  90. 88.
    Poo, M., and R. A. Cone. 1974. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247: 438–441.CrossRefPubMedGoogle Scholar
  91. 89.
    Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 8: 185–235.CrossRefPubMedGoogle Scholar
  92. 90.
    Suurkuusk, J., B. R. Lentz, Y. Barenholz, R. L. Biltonen, and T. E. Thompson. 1976. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar di-palmitoylphosphatidylcholine vesicles. Biochemistry 15: 1393–1401.CrossRefPubMedGoogle Scholar
  93. 91.
    Barenholz, Y., J. Suurkuusk, D. Mountcastle, T. E. Thompson, and R. Biltonen. 1976. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry 15: 2441–2447.CrossRefPubMedGoogle Scholar
  94. 92.
    Shimshick, E. J., and H. M. McConnell. 1973. Lateral phase separation in phospholipid membranes. Biochemistry. 12: 2351–2360.CrossRefPubMedGoogle Scholar
  95. 93.
    McConnell, H. M. 1975. Coupling between lateral and perpendicular motion in biological membranes. In: Functional Linkage in Biomolecular Systems. F. O. Schmitt, V. M. Schneider, and D. M. Crothers, eds. Raven, New York. pp. 123–131.Google Scholar
  96. 94.
    Thompson, T. E., C. Huang, and B. J. Litman. 1974. Bilayers and biomembranes: Compositional asymmetries induced by surface curvature. In: Cell Surface in Development. A. A. Moscona, ed. Wiley, New York, pp. 1–16.Google Scholar
  97. 95.
    Eggers, F., and T. H. Funck. 1976. Ultrasonic relaxation spectroscopy in liquids. Naturwissenschaften 63: 280–285.CrossRefGoogle Scholar
  98. 96.
    Lippert, J. L., and W. L. Peticolas. 1971. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc. Natl. Acad. Sci. U.S.A. 68: 1572–1576.CrossRefPubMedGoogle Scholar
  99. 97.
    Trauble, H. 1972. Phase transitions in lipids. In: Biomembranes, Vol. 3. F. Krenze and J. F. G. Siegers, eds. Plenum Press, New York. pp. 197–227.Google Scholar
  100. 98.
    Marcelja, S. 1974. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. Biophys. Acta 367: 165–176.CrossRefPubMedGoogle Scholar
  101. 99.
    Phillips, M. C. 1972. The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. Prog. Membr. Surf. Sci. 5: 139–221.Google Scholar
  102. 100.
    Chapman, D. 1973. Some recent studies of lipids, lipid cholesterol and membrane systems. In: Biological Membranes. D. Chapman and D. F. H. Wallach, eds. Academic Press, New York. pp. 91–144.Google Scholar
  103. 101.
    Jain, M. K. 1975. Role of cholesterol in biomembranes and related systems. Curr. Top. Membr. 6: 1–57.CrossRefGoogle Scholar
  104. 102.
    Demel, R. A., and B. de Kruyff. 1976. The function of sterols in membranes. Biochim. Biophys. Acta 457: 109–132.CrossRefPubMedGoogle Scholar
  105. 103.
    Brockerhoff, H. 1974. Model of interaction of polar lipids, cholesterol and proteins in biological membranes. Lipids 9: 645–650.CrossRefPubMedGoogle Scholar
  106. 104.
    Lecuyer, H., and D. G. Dervichian. 1969. Structure of aqueous mixtures of lecithin and cholesterol. J. Mol. Biol. 45: 39–57.CrossRefPubMedGoogle Scholar
  107. 105.
    Levine, Y. K., and M. H. F. Wilkins. 1971. Structure of oriented lipid bilayers. Nature (New Biol.) 230: 69–72.CrossRefGoogle Scholar
  108. 106.
    Chapman, D., and S. A. Plenkett. 1966. Nuclear magnetic resonance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature 211: 1304–1305.CrossRefPubMedGoogle Scholar
  109. 107.
    Darke, A., E. G. Finer, A. G. Flook, and M. C. Phillips. 1972. Nuclear magnetic resonance study of lecithin-cholesterol interactions. J. Mol. Biol. 63: 265–279.CrossRefPubMedGoogle Scholar
  110. 108.
    Stoffel, W., B. P. Tunggal, O. Zierenberg, E. Schrei-ber, and E. Brinczek. 1974. 13C NMR studies of lipid interactions in single-and multicomponent lipid vesicles. Hoppe Seylers Z. Physiol. Chem. 355: 1367–1380.Google Scholar
  111. 109.
    Godici, P. E., and F. R. Landsberger. 1975.13C NMR studies of the dynamic structure of lecithin-cholesterol membranes and the position of stearic acid spin labels. Biochemistry 14: 3927–3933.Google Scholar
  112. 110.
    Cullis, P. R. 1976. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions. FEB S Lett. 70: 223–228.CrossRefGoogle Scholar
  113. 111.
    Mendelsohn, R. 1972. Laser-Raman spectroscopic study of egg lecithin and egg lecithin-cholesterol mixtures. Biochim. Biophys. Acta 290: 15–21.CrossRefPubMedGoogle Scholar
  114. 112.
    Spiker, R. C., and I. W. Levin. 1976. Phase transitions of phospholipid single-wall vesicles and multilayers: Measurement by vibrational Raman spectroscopic frequency differences. Biochim. Biophys. Acta 455: 560–575.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • T. E. Thompson
    • 1
  • C. Huang
    • 1
  1. 1.Department of BiochemistryUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations