Genes and Membranes

  • Edward A. Adelberg
  • Carolyn W. Slayman


It is now generally accepted that the composition of biological membranes is under genetic control. For each membrane protein, each enzyme involved in the biosynthesis of membrane lipids, and each enzyme that modifies either proteins or lipids (e.g., by adding carbohydrate residues to make glycoproteins or glycolipids), there must be a structural gene whose nucleotide sequence specifies the appropriate amino acid sequence. In addition, there are assumed to be regulatory genes which govern the rates at which the various proteins are made. The purpose of this chapter is to survey the ways in which genetic studies can contribute to our understanding of membrane structure and function. Successive sections of the chapter will discuss the criteria for establishing that differences in membrane properties are genetically determined, the kinds of information that can come from biochemical and physiological studies on membrane mutants, and the information that can be gained by genetic analysis. First, however, it will be important to define the various mutational events that can occur, and the effects of each on the structure or rate of synthesis of the corresponding protein.


Membrane Function Complementation Test Hereditary Spherocytosis Dominance Test Ouabain Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrams, M., and J. D. Battle, Jr. 1952. A genetic study in hereditary spherocytosis. Am. J. Hum. Genet. 4: 350–355.PubMedGoogle Scholar
  2. 2.
    Adler, J., and W. Epstein. 1974. Phosphotransferasesystem enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 71: 2895–2899.CrossRefPubMedGoogle Scholar
  3. 3.
    Adler, J., G. L. Hazelbauer, and M. M. Dahl. 1973. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115: 824–847.Google Scholar
  4. 4.
    Aksamit, R., and D. E. Koshland, Jr. 1972. A ribose binding protein of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 48: 1348–1353.CrossRefGoogle Scholar
  5. 5.
    Ames, G. F. 1964. Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. Biophys. 104: 1–18.CrossRefGoogle Scholar
  6. 6.
    Ames, G. F., and J. Lever. 1970. Components of histidine transport: Histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. U.S.A. 66: 1096–1103.CrossRefPubMedGoogle Scholar
  7. 7.
    Ames, G. F., and J. Lever. 1972. The histidine-binding protein J is a component of histidine transport: Identification of its structural gene hisJ. J. Biol. Chem. 247: 4309–4316.Google Scholar
  8. 8.
    Baker, R. M., D. M. Brunette, R. Mankovitz, L. H. Thompson, G. F. Whitmore, L. Simonovitch, and J. E. Till. 1974. Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1: 9–21.CrossRefGoogle Scholar
  9. 9.
    Beckwith, J. R., and D. Zipser, eds. 1970. The Lactose Operon. Cold Spring Harbor Laboratory, New York.Google Scholar
  10. 10.
    Boos, W. 1972. Structurally defective galactose-binding protein isolated from a mutant negative in the ßmethylgalactoside transport System of Escherichia coli J. Biol. Chem. 247: 5414–5424.Google Scholar
  11. 11.
    Boos, W. 1974. Pro and contra carrier proteins; sugar transport via the periplasmic galactose-binding protein. In: Current Topics in Membranes and Transport, Vol. 5. F. Bronner and A. Kleinzeller, eds. Academic Press. New York. pp. 51–136.Google Scholar
  12. 12.
    Chasin, L. A. 1973. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J. Cell. Physiol. 82: 299–308.CrossRefPubMedGoogle Scholar
  13. 13.
    Dunham, P. B., and J. F. Hoffman. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J. Gen. Physiol. 58: 94–116.CrossRefPubMedGoogle Scholar
  14. 14.
    Elsas, L. J., R. E. Hillman, J. H. Patterson, and L. E. Rosenberg. 1970. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J. Clin. Invest. 49: 576–585.CrossRefPubMedGoogle Scholar
  15. 15.
    Ephrussi. B. 1972. Hybridization of Somatic Cells. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  16. 16.
    Fox, C. F., J. R. Carter, and E. P. Kennedy. 1967. Genetic control of the membrane protein component of the lactose transport system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 57: 698–705.CrossRefGoogle Scholar
  17. 17.
    Fox, C. F., and E. P. Kennedy. 1965. Specific labelling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 54: 891–899.CrossRefGoogle Scholar
  18. 18.
    Harris, H. 1970. Cell Fusion. Oxford Univ. Press ( Clarendon ), London.Google Scholar
  19. 19.
    Hazelbauer, G. L., and J. Adler. 1971. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (New Biol.) 230: 101–104.Google Scholar
  20. 20.
    Hoffman, P. G., and D. C. Tosteson. 1971. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J. Gen. Physiol. 58: 438–466.CrossRefPubMedGoogle Scholar
  21. 21.
    Jacob, F., D. Perrin, C. Sanchez, and J. Monod. 1960. L’opéron: Groupe de gènes à expression coordonée par un opérateur. C. R. Acad. Sci. 250: 1727–1729.Google Scholar
  22. 22.
    Jones, T. H. D., and E. P. Kennedy. 1969. Characterization of the membrane protein component of the lactose transport system of Escherichia coli. J. Biol. Chem. 244: 5981–5987.Google Scholar
  23. 23.
    Kennedy, E. P. 1970. The lactose permease system of Escherichia coli. In: The Lactose Operon. J. R. Beckwith and D. Zipser, eds. Cold Spring Harbor Laboratory, New York. pp. 49–82.Google Scholar
  24. 24.
    Kennedy, E. P., M. K. Rumley, and J. B. Armstrong. 1974. Direct measurement of the binding of labeled sugars to the lactose permease M protein. J. Biol. Chem. 249: 33–37.PubMedGoogle Scholar
  25. 25.
    Kung, C., S.-Y. Chang, Y. Satow. J. Van Houten, and H. Hansma. 1975. Genetic dissection of behavior in Paramecium. Science 188: 898–904.Google Scholar
  26. 26.
    Kustu, S. G., and G. F. Ames. 1974. The histidine-binding protein J, a histidine transport component, has two different functional sites. J. Biol. Chem. 249: 69766983.Google Scholar
  27. 27.
    Lever, J. E. 1972. Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J. J. Biol. Chem. 247: 4317–4326.Google Scholar
  28. 28.
    Mankovitz, R., M. Buchwald, and R. M. Baker. 1974. Isolation of ouabain-resistant human diploid fibroblasts. Cell 3: 221–226.CrossRefPubMedGoogle Scholar
  29. 29.
    Mezger-Freed, L. 1971. Puromycin-resistance in haploid and heteroploid frog cells: Gene or membrane determined? J. Cell Biol. 51: 742–751.CrossRefPubMedGoogle Scholar
  30. 30.
    Ordal, G. W., and J. Adler. 1974. Isolation and complementation of mutants in galactose taxis and transport. J. Bacteriol. 117: 509–516.PubMedGoogle Scholar
  31. 31.
    Orda!, G. W., and J. Adler. 1974. Properties of mutants in galactose taxis and transport. J. Bacteriol. 117: 517526.Google Scholar
  32. 32.
    Rosenberg, L. E., and C. R. Scriver. 1974. Disorders of amino acid metabolism. In: Duncan’s Diseases of Metabolism, 7th ed. P. K. Bondy and L. E. Rosenberg, eds. Saunders, Philadelphia, Pennsylvania. pp. 465–654.Google Scholar
  33. 33.
    Slayman, C. W. 1973. The genetic control of membrane transport. In: Current Topics in Membranes and Transport, Vol. 4. F. Bronner and A. Kleinzeller, eds. Academic Press, New York. pp. 1–174.Google Scholar
  34. 34.
    Stanley, P., V. Caillibot, and L. Simonovitch. 1975. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genet. 1: 3–26.CrossRefPubMedGoogle Scholar
  35. 35.
    Stanley, P., S. Narasimhan, L. Siminovitch, H. Schacter. 1975. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine-glycoprotein N-acetylglucosaminyl transferase activity. Proc. Natl. Acad. Sci. U.S.A. 72: 3323–3327.CrossRefPubMedGoogle Scholar
  36. 36.
    Till, J. E., R. M. Baker, D. M. Brunette, V. Ling, L. H. Thompson, and J. A. Wright. 1973. Genetic regulation of membrane function in mammalian cells in culture. Fed. Proc. 32: 29–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Edward A. Adelberg
    • 1
  • Carolyn W. Slayman
    • 1
  1. 1.Departments of Human Genetics and PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations