Advertisement

Ion Selectivity in Membrane Permeation

  • Sally Krasne

Abstract

A basic function of cell membranes is discrimination in their permeability to such closely related ions as Na+ and K+, Ca2 + and Mg2 +, or Cland I. This ionic discrimination underlies such basic cellular phenomena as the generation of resting potentials, action potentials, receptor potentials, transmitter release, active transport, and enzyme activation. The present chapter has two purposes: to compare the ion discrimination observed for the passive permeation of cell membranes with that induced in artificial lipid bilayer membranes by certain ion translocators*; and to examine the most salient theories and approaches toward determining the molecular origins of ionic discrimination in membrane transport.

Keywords

Transition State Permeability Ratio High Energy Barrier Selectivity Sequence Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 255 - 324.Google Scholar
  2. 2.
    Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ion and nonelectolyte selectivity. Annu. Rev. Physiol. 31: 581 - 646.PubMedCrossRefGoogle Scholar
  3. 3.
    Wright, E. M., and J. M. Diamond. 1977. Anion selectivity in 12iological systems. Physiol. Rev. 57: 109 - 156.PubMedGoogle Scholar
  4. 4.
    Eisenman, G. 1963. The influence of Na, K, Li, Rb and Cs on cellular potenti als and related phenomena. Bol. Inst. Estud. Med. Biol. (Mex.) 21: 155 - 183.Google Scholar
  5. 5.
    Eisenman, G., and S. Krasne. 1975. The ion selectivity of carrier molecules, membranes, and enzymes. In: MTP International Review of Science, Biochemistry Series, Vol. 2. C. F. Fox, ed. Butterworth, London. pp. 27 - 59.Google Scholar
  6. 6.
    Maizels, M. J. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, cesium or lithium chloride. J. Physiol. (Lond.) 195: 657 - 679.Google Scholar
  7. 7.
    Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61: 669 - 686.PubMedCrossRefGoogle Scholar
  8. 8.
    Cowie, D. B., and R. B. Roberts. 1955. Permeability of microorganisms to inorganic ions, amino acids and peptides. In: Electrolytes in Biological Systems. A. M. Shanes, ed. Am. Physiol. Soc., Washington, D.C. pp. 1 - 34.Google Scholar
  9. 9.
    Moreno, J. H., and J. M. Diamond. 1975. Cation permeation mechanisms and cation selectivity in “tight junctions” of gallbladder epithelium. In: Membranes-A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 383 - 517.Google Scholar
  10. 10.
    Hodgkin, A. L. 1947. The effect of potassium on the surface membrane of an isolated axon. J. Physiol. 106: 319.PubMedGoogle Scholar
  11. 11.
    Conway, E. J., and F. A. Duggan. 1958. A cation carrier in the yeast cell wall. Biochem. J. 69: 265 - 274.PubMedGoogle Scholar
  12. 12.
    Hagiwara, S., D. C. Eaton, A. E. Stuart, and N. P. Rosenthal. 1972. Cation selectivity of the resting membrane of squid axon. J. Membr. Biol. 9: 373 - 384.PubMedCrossRefGoogle Scholar
  13. 13.
    Hagiwara, S., K. Toyama, and H. Hayashi. 1971. Mechanisms of anion and cation permeations in the resting membrane of a barnacle muscle fiber. J. Gen.Google Scholar
  14. 14.
    Muffins, L. J. 1959. The penetration of some cations electrical properties of phospholipid bilayer mem-into muscle. J. Gen. Physiol. 42:817-829. branes. J. Membr. Biol. 1: 346 - 382.Google Scholar
  15. 15.
    Sjodin, R. A. 1959. Rubidium and cesium fluxes in 35. Krasne, S., and G. Eisenman 1976. The influence of muscle as related to the membrane potential. J. Gen. molecular variations of ionophore and lipid on the Physiol. 42:983-1003. selective ion permeability of membranes: I. TetranactinGoogle Scholar
  16. 16.
    Gainer, H. See Ref. 4. and the methylation of nonactin-type carriers. J.Google Scholar
  17. 17.
    Braucho, H. See Ref. 12. Membr. Biol. 30: 1 - 44.Google Scholar
  18. 18.
    Osterhaut, W. J. V. 1939-1940. Calculations of bio- 36. Kuo, K.-H., and G. Eisenman. 1977. Na+ selective electric potentials. V. Potentials in halicystis. J. Gen. permeation of lipid bilayers mediated by a neutral iono-Physiol. 23:53. phore. Biophys. J. 17: 212a.Google Scholar
  19. 19.
    Baker, P. F., A. L. Hodgkin, and T. I. Shaw. 1962. The 37. Suelter, C. H. 1974. Monovalent cations in enzyme-effects of changes in internal ionic concentrations on catalyzed reactions in: Metal Ions in Biological Sys-the electrical properties of perfused giant axons. J. tems, Vol. 3. H. Sigel, ed. Dekker, New York. pp. Physiol. 164: 355-374. 201 - 251.Google Scholar
  20. 20.
    Berridge, M. J. 1968. Urine formation by the malpigh- 38. McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. ian tubules of Calliphora. J. Exp. Biol. 48: 159 - 174.Google Scholar
  21. 21.
    Lindley, B. D., and T. Hoshiko. 1962. Cation selectiv ties and cation specificity. J. Biol. Chem. 246:3569-ity of biological membranes. Physiologist 5: 176. 3578.Google Scholar
  22. 22.
    Gillary, H. L. 1966. Stimulation of the salt receptor of 39. Cohen, D. 1962. Specific binding of rubidium in Chlothe blowfly. 3. The alkali halides. J. Gen. Physiol. rella. J. Gen. Physiol. 45: 959 - 977.Google Scholar
  23. 23.
    Hille, B. 1971. The permeability of the sodium channel Mgr+-activated ATPase activity of reconstituted acto-to organic cations in myelinated nerve. J. Gen. Phys myosin. Biochim. Biophys. Acta 162: 79 - 85.Google Scholar
  24. 24.
    Chandler, W. K. and H. Meves. 1964. Voltage-clamp 1970. Thallium (I) as a potassium probe in biological experiments on perfused giant axons. J. Physiol. systems. Chem. Commun. 1970: 965 - 966.Google Scholar
  25. 25.
    Lindeman, B. 1968. Resting potential of isolated beef 1971. Propanediol dehydratase system. Role of mono-cornea. Exp. Eye Res. 7:62-69. valent cations in binding of vitamin B12 co-enzyme orGoogle Scholar
  26. 26.
    Eisenman, G., S. G. Ciani, and G. Szabo. 1968. Some its analogs to apoenzyme. Biochemistry 10: 3475 - 3483Google Scholar
  27. 27.
    McLaughlin, S. G. A., G. Szabo, S. Ciani, and G. stimulated phosphatase of microsomes from gastric Eisenman. 1972. The effects of a cyclic polyether on mucosa. J. Cell. Physiol. 69: 293 - 304.Google Scholar
  28. 28.
    Myers, V. B., and D. A. Haydon. 1972. Ion transfer bly related to the active, linked transport of Na ion and across lipid membranes in the presence of gramicidin K ion across the nerve membrane. Biochim. Biophys. A. II. The ion selectivity. Biochim. Biophys. Acta Acta 42: 6 - 23.Google Scholar
  29. 29.
    Gordon, L. G. M. 1974. Ion transport via alamethicin phosphatase as part of the (Na+ + K+)-dependent channels In: Drugs and Transport Processes. B. A. ATPase of cell membranes. Biochim. Biophys. Acta Callingham, ed. Univ. Park Press, London. pp. 251 118:116-123.Google Scholar
  30. 30.
    Eisenman, G., S. Krasne, and S. Ciani. 1975. The axon plasma membrane: Effects of cations and anions kinetic and equilibrium components of selective ionic on the axonal cholinergic binding macromolecule of permeability mediated by nactin-and valinomycin-type lobster nerves. J. Membr. Biol. 11: 47 - 56.Google Scholar
  31. 31.
    Mueller, P., and D. O. Rudin. 1967. Development of myosin and other enzymes. J. Biol. Chem. 241:309-K+ and Na+ discrimination in experimental bimolecular 316. lipid membranes by macrocyclic antibiotics. Biochem. 49Google Scholar
  32. 32.
    Lev, A. A., and E. P. Buzhinsky. 1967. Cation speci erties of the enzyme from calf brain. J. Biol. Chem. ficity of the model bimolecular phospholipid mem 242: 607 - 615.Google Scholar
  33. 33.
    Mueller, P., and D. O. Rudin. 1969. Translocators in Ann. N.Y. Acad. Sci. 148: 285 - 287.Google Scholar
  34. 34.
    Szabo, G., G. Eisenman, and S. Ciani. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1: 346 - 382.CrossRefGoogle Scholar
  35. 35.
    Krasne, S., and G. Eisenman. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nenactin-type carriers. J. Membr. Biol. 30: 1 - 44.Google Scholar
  36. 36.
    Kuo, K.-H., and G. Tisenman. 1997. Na+ selective permeation of lipid bilayers mediated by a neutral ionophore. Biophys. J. 17: 212a.Google Scholar
  37. 37.
    Suelter, C. H. 1974. Monovalent cations in enzyme-catalyzed reactions in: Metal Ions in Biological Systems, Vol. 3. H. Sigel, ed. Dekker, New York. Pp. 201 - 251.Google Scholar
  38. 38.
    McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. Rat liver pyruvate carboxylase. I Preparation, properties and cation specificity. J. Biol. Chem. 246: 3569 - 3578.PubMedGoogle Scholar
  39. 39.
    Myers, V. B., and D. A. Haydon. 1972. Ion transfer bly related to the active, linked transport of Na ion and across lipid membranes in the presence of gramicidin K ion across the nerve membrane. Biochim. Biophys. A. II. The ion selectivity. Biochim. Biophys. Acta Acta 42: 6 - 23.Google Scholar
  40. 40.
    Gordon, L. G. M. 1974. Ion transport via alamethicin phosphatase as part of the (Na+ + K+)-dependent channels In: Drugs and Transport Processes. B. A. ATPase of cell membranes. Biochim. Biophys. Acta Callingham, ed. Univ. Park Press, London. pp. 251 118:116-123.Google Scholar
  41. 41.
    Eisenman, G., S. Krasne, and S. Ciani. 1975. The axon plasma membrane: Effects of cations and anions kinetic and equilibrium components of selective ionic on the axonal cholinergic binding macromolecule of permeability mediated by nactin-and valinomycin-type lobster nerves. J. Membr. Biol. 11: 47 - 56.Google Scholar
  42. 42.
    Mueller, P., and D. O. Rudin. 1967. Development of myosin and other enzymes. J. Biol. Chem. 241:309-K+ and Na+ discrimination in experimental bimolecular 316. lipid membranes by macrocyclic antibiotics. Biochem. 49Google Scholar
  43. 43.
    Lev, A. A., and E. P. Buzhinsky. 1967. Cation speci erties of the enzyme from calf brain. J. Biol. Chem. ficity of the model bimolecular phospholipid mem 242: 607 - 615.Google Scholar
  44. 44.
    Mueller, P., and D. O. Rudin. 1969. Translocators in Ann. N.Y. Acad. Sci. 148: 285 - 287.Google Scholar
  45. 45.
    Szabo, G., G. Eisenman, and S. Ciani. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1: 346 - 382.CrossRefGoogle Scholar
  46. 46.
    Krasne, S., and G. Eisenman. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nenactin-type carriers. J. Membr. Biol. 30: 1 - 44.Google Scholar
  47. 47.
    Kuo, K.-H., and G. Tisenman. 1997. Na+ selective permeation of lipid bilayers mediated by a neutral ionophore. Biophys. J. 17: 212a.Google Scholar
  48. 48.
    Suelter, C. H. 1974. Monovalent cations in enzyme-catalyzed reactions in: Metal Ions in Biological Systems, Vol. 3. H. Sigel, ed. Dekker, New York. Pp. 201 - 251.Google Scholar
  49. 49.
    McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. Rat liver pyruvate carboxylase. I Preparation, properties and cation specificity. J. Biol. Chem. 246: 3569 - 3578.PubMedGoogle Scholar
  50. 50.
    Bezanilla, F., and C. M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the K channels of squid axons. J. Gen. Physiol. 60: 588 - 608.PubMedCrossRefGoogle Scholar
  51. 51.
    Krasne, S., and G. Eisenman 1973. The molecular basis of ion selectivity. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 277 - 328.Google Scholar
  52. 52.
    Gould, E. S. 1959. Mechanism and Structure in Organic Chemistry. Holt, New York.Google Scholar
  53. 53.
    Eisenman, G., S. M. Ciani, and G. Szabo. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J. Membr. Biol. 1: 294 - 345.CrossRefGoogle Scholar
  54. 54.
    Eisenman, G 1961. On the elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, Academic Press, New York. pp. 163179.Google Scholar
  55. 55.
    Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels• A four barrier model. J. Gen. Physiol. 66: 535 - 560.PubMedCrossRefGoogle Scholar
  56. 56.
    Armstrong, C. M. 1975. Potassium pores of nerve and muscle membranes. In: Membranes -A Series of Advances, Vol. 3. J. Eisenman, ed. Dekker, New York. pp. 325 - 358.Google Scholar
  57. 57.
    Frankenheuser, B. 1962. Delayed currents in myelinated nerve fibres of Xenopus labuis investigated with voltage clamp technique. J. Physiol. (Lond.) 160: 4045.Google Scholar
  58. 58.
    Ciani, S. G., G. Eisenman, R. Laprade, and G. Szabo. 1973. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes. In: Membranes A Series of Advances, Vol. 2. G. Eisenman, ed. Dekker, New York. pp. 61 - 177.Google Scholar
  59. 59.
    Hodgkin, A. L., and R. D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128: 61 - 88.Google Scholar
  60. 60.
    Horowitz, P., P. W. Gage, and R. S. Eisenberg. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51: 193s - 203s.CrossRefGoogle Scholar
  61. 61.
    Begenisich, T., and M. Cahalan. 1975. Internal K+ alters sodium channel selectivity. Abstract, International Biophysics Congress, Copenhagen. p. 133.Google Scholar
  62. 62.
    Eisenman, G., J. Sandblom, and E. Neher. 1977. Ionic selectivity, saturation, binding, and block in the gramicidin A channel: A preliminary report. In: Metal- Ligand Interactions in Organic and Biochemistry. 9th Jerusalem Symposium. B. Pullman, ed. Reidel, Holland. pp. 1 - 36.Google Scholar
  63. 63.
    Hagiwara, S., S. Miyazaki, S Krasne, and S. Ciani. 1977. Anomalous permeabilities of the egg cell membrane of a starfish in K+-T1+ mixtures. J. Gen. Physiol. 70: 269 - 281.PubMedCrossRefGoogle Scholar
  64. 64.
    Bezanilla, F., and C. M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the K channels of squid axons. J. Gen. Physiol. 60: 588 - 608.PubMedCrossRefGoogle Scholar
  65. 65.
    Krasne, S., and G. Eisenman 1973. The molecular basis of ion selectivity. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 277 - 328.Google Scholar
  66. 66.
    Simon, W., and W. E. Morf. 1973 Alkali cation specificity of carrier antibiotics and their behavior in bulk membranes. In: Membranes -A Series of Advances Vol. 2. G. Eisenman, ed. Dekker, New York. pp. 329 - 376.Google Scholar
  67. 67.
    Eisenman, G. 1969. Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules. In: Ion-Selective Electrodes. R. A. Durst, ed. Special Publication 314, National Bureau of Standards, Washington, D.C. pp. 1 - 56.Google Scholar
  68. 68.
    Gould, E. S. 1959. Mechanism and Structure in Organic Chemistry. Holt, New York.Google Scholar
  69. 69.
    Ciani, S., R. Laprade, G. Eisenman, and G. Szabo. 1973. Theory for carrier-mediated zero-current conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape. J. Membr. Biol. 11: 255 - 292.CrossRefGoogle Scholar
  70. 70.
    Ciani, S., F. Gambale, A. Gliozzi, and R. Rolandi. 1975. Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions. J. Membr. Biol. 24: 1 - 34.PubMedCrossRefGoogle Scholar
  71. 71.
    Läuger, P., and B. Neumcke. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes. In: Membranes -A Series of Advances, Vol. 2. G. Eisen-man, ed. Dekker, New York. pp. 1 - 60.Google Scholar
  72. 72.
    Szabo, G., and G. Eisenman. 1973. Enhanced cation permeation in glyceryl oleate bilayers. Biophys. Soc. Abstr. 13: 175a.Google Scholar
  73. 73.
    Ciani, S. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: II. A theoretical model. J. Membr. Biol. 30: 45 - 64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Sally Krasne
    • 1
  1. 1.Department of Physiology and the Ahmanson Neurobiology Laboratory of the Brain Research InstituteUniversity of California Medical SchoolLos AngelesUSA

Personalised recommendations