Advertisement

Radiation Monitoring

  • Ralph H. Thomas
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)

Abstract

In the strict sense, this paper will not discuss any real “advances” in radiation monitoring. What is presented here has been known and applied at high-energy accelerator laboratories for several years. However, the increasing application of a variety of high-LET radiations, produced by accelerators, to radiodiagnosis and radiotherapy which have been described in this course has led to the need to more widely disseminate this knowledge.

Keywords

Exposure Rate Neutron Fluence Area Monitoring Lawrence Berkeley Laboratory Radiation Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Commission on Radiological Protection. “The RBE for High-LET Radiations with Respect to Mutagenesis” in ICRP Publication No. 18, Pergamon Press. Oxford (1972).Google Scholar
  2. 2.
    H. H. Rossi and C. W. Mays, Leukemia Risk from Neutrons. Health Physics 34: 333 (1978).CrossRefGoogle Scholar
  3. 3.
    A. Rindi, R. H. Thomas, 1973, The Radiation Environment of High-Energy Accelerators, Annu. Rev, of Nucl. Sci. 23: 315, (1973).ADSCrossRefGoogle Scholar
  4. 4.
    R. H. Thomas, and A. Rindi, (Eds), “Proceedings of the First Course on High-Energy Radiation Dosimetry and Protection” Erice, Italy. October 1975, in I.E.E.E. Trans Nuclear Science Ns-23, No. 4. (1976).Google Scholar
  5. 5.
    R. H. Thomas, Book Review, NCRP Report No. 51 Health Physics 36: 92 (1979).Google Scholar
  6. 6.
    E. Fermi, E. Amaldi, O. D’Agostino, F. Rasetti, and E. Segre, Proc. Roy Soc. (London) A: 146, 483 (1934).ADSCrossRefGoogle Scholar
  7. 7.
    International Commission on Radiological Protection, “General Principles of Monitoring for Radiation Protection of Workers” in ICRP Publication No. 12, Pergamon Press, Oxford, Par. 4 (1969).Google Scholar
  8. 8..
    Op. Cit. Ref. 7. Par. 28.Google Scholar
  9. 9..
    Op. Cit. Ref. 7. Par. 42.Google Scholar
  10. 10..
    Op. Cit. Ref. 7. Par. 86.Google Scholar
  11. 11..
    Op. Cit. Ref. 7. Par. 45–47.Google Scholar
  12. 12.
    V. Perez-Mendez, Instrumentation—Active Detectors. Lecture No. 9, in “Advances in Radiation Protection and Dosimetry in Medicine” Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy (Sept. 1979).Google Scholar
  13. 13.
    R. H. Thomas, Instrumentation—Passive Detectors. Lecture No. 10, in “Advances in Radiation Protection and Dosimetry in Medicine” Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy (Sept. 1979).Google Scholar
  14. 14.
    J. R. Castro, J. M. Quivey, J. T. Lyman, G. T. Y. Chen, C. A. Tobias, L. L. Kanstein, and R. E. Walton, Heavy-ion Therapy in Biological and Medical Research with Accelerated Heavy Ions at the Bevalac 1974–1977, Lawrence Berkeley Laboratory Report LBL-5610, pp. 182–218 (1977).Google Scholar
  15. 15.
    A. R. Smith, et al., Neutron Flux Density and Secondary-Particle Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, Lawrence Berkeley Laboratory Report LBL-6721, (1978).CrossRefGoogle Scholar
  16. 16.
    J. B. McCaslin, W. R. Schimmerling, A. R. Smith and R. H. Thomas, Neutron Fluence Rates and Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, Paper read at Health Physics Society Meeting, Philadelphia, July 8–13, 1979.Google Scholar
  17. 17.
    W. S. Schimmerling, A. R. Smith, and R. H. Thomas, Neutron Flux Density and Secondary Particle Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, XII International Conference on Medical and Biological Engineering, Jerusalem, August 19–24, 1979.Google Scholar
  18. 18.
    J. T. Routti, High-Energy Neutron Spectroscopy with Activation Detectors, Incorporating New Methods for the Analysis of Ge(Li) Gamma-Ray Spectra and the Solution of Fredholm Integral Equations, Ph.D. Thesis—University of California at Berkeley, Lawrence Berkeley Laboratory Report UCRL-18514 (1969).Google Scholar
  19. 19.
    A. Rindi, An Analytical Expression for the Neutron Flux to Absorbed Dose Conversion Factor. Health Physics 33: 264 (1979).Google Scholar
  20. 20.
    Title 10, Part 50, Appendix I, Code of Federal Regulations, Federal Register 36: 111 (1971).Google Scholar
  21. 21.
    Environmental Radiation Protection Requirements for Normal Operations of Activities in the Uranium Fuel Cycle, Notice of Proposed Rulemaking, U. S. Environmental Protection Agency (1973).Google Scholar
  22. 22.
    W. M. Lowder and C. V. Gogolak, Experimental and Analytical Radiation Dosimetry Near a Large BWR IEEE Trans., Nucl. Sci. NS-21, No. 1: 423 (1974).CrossRefGoogle Scholar
  23. 23.
    W. M. Lowder and C. V. Gogolak, Experimental and Analytical Radiation Dosimetry Near a Large BWR IEEE Trans., Nucl. Sci. NS-21, No. 1: 429 (1974).Google Scholar
  24. 24.
    A. R. Jones, A Gamma Monitor for Measuring Environmental Gamma Doses and Dose Rates, Atomic Energy of Canada Limited Report AECL-3989 (1974).Google Scholar
  25. 25.
    A. R. Jones, Measurement of Low Level Environmental Gamma Dose with TLD’s and Geiger Counters, IEEE Trans., Nucl. Sci. NS-21, No. 1: 456 (1974).CrossRefGoogle Scholar
  26. 26.
    H. L. Beck, J. A. DeCampo, et al., New Perspective on Low Level Environmental Radiation Monitoring Around Nuclear Facilities, Nuclear Technology 14: 232 (1972).Google Scholar
  27. 27.
    M. E. Cassidy, S. Watnick, et al., A Computer-Compatible field Monitoring System, IEEE Trans, Nucl. Sci. 21, No. 1: 461 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    H. W. Wollenberg, H. W. Patterson, A. R. Smith, and L. D. Stephens, Natural and Fallout Radioactivity in the San Francisco Area, Health Physics 17, No. 2: 313, (1969).CrossRefGoogle Scholar
  29. 29.
    J. D. Chester, R. L. Chase, and S. Wood, A Digital Environmental Monitor, Brookhaven National Laboratory Report BNL-16922 (1972).Google Scholar
  30. 30.
    G. de Planque-Burke, Thermoluminescent Dosimeter Measurements of Perturbations of the Natural Radiation Environment, in “Proc. of Second Intl. Symp. on the Natural Radiation Environment,” U.S. Atomic Energy Commission Symposium Series (1974).Google Scholar
  31. 31.
    C. L. Lindeken, D. E. Jones, and R. E. McMillen, Environmental Radiation Background Variations Between Residences, Health Physics 24: 81 (1973).CrossRefGoogle Scholar
  32. 32.
    H. W. Patterson and R. H. Thomas, Accelerator Health Physics, Academic Press, New York (1973).Google Scholar
  33. 33.
    L. D. Stephens and H. S. Dakin, A High Reliability Environmental Radiation Monitoring and Evaluation System, Proc. of the Vlth International Congress of the Société Francaise de Radioprotection, Bordeaux, France, March 27–31, 1972.Google Scholar
  34. 34.
    R. H. Thomas (Ed), The Environmental Surveillance Program of the Lawrence Berkeley Laboratory, Lawrence Berkeley Laboratory Report LBL-4827 (1976).Google Scholar
  35. 35..
    H. L. Beck, W. M. Lowder and J. C. McLaughlin, In Situ External Environmental Gamma Ray Measurements Utilizing Ge(Li) and Nal(Tl) Spectrometry and Pressurized Ionization Chambers, IAEA SM/148–2, IAEA, Vienna.Google Scholar
  36. 36.
    G. de Planque-Burke, Variations in Natural Environmental Gamma Radiation and its Effect on the Interpretability of TLD Measurements made Near Nuclear Facilities. USAEC., Health and Safety Laboratory, (1974).Google Scholar
  37. 37.
    G. de Planque-Burke and K. O’Brien, USAEC Report, HASL-283 (1974).Google Scholar
  38. 38.
    M. Eisenbud, Environmental Radioactivity, chapter 7, in “Natural Radioactivity,” Academic Press, New York (1973).Google Scholar
  39. 39.
    L. B. Lockhart, Atmospheric Radioactivity Studies at U. S. Naval Research Laboratory, U. S. Naval Research Laboratory, Rep. 5249 (1958).Google Scholar
  40. 40.
    R. M. Sievert and B. Hulquist, Acta Radiologica, 37: 388 (1952).CrossRefGoogle Scholar
  41. 41.
    P. R. J. Burch, J. C. Duggleby, B. Oldroyd, and F. W. Spiers, in “The Natural Radiation Environment”, p. 767, The University of Chicago Press, Chicago.Google Scholar
  42. 42.
    H. L. Beck and G. de Planque-Burke, USAEC Report HASL-195 (1968).Google Scholar
  43. 43.
    C. V. Gogolak and K. M. Miller, Method for Obtaining Radiation Exposure due to a Boiling Water Reactor Plume from Continuously Monitoring Ionization Chambers, Health Physics 27: 132 (1974).Google Scholar
  44. 44.
    W. W. Goldworthy, Transistorized portable counting rate meter, Nucleonics 18: 92 (1960).Google Scholar
  45. 45.
    L. D. Stephens, H. W. Patterson and A. R. Smith, Fallout and Natural Background in the San Francisco Bay Area, Health Physics 4: 267 (1961).CrossRefGoogle Scholar
  46. 46.
    H. W. Patterson, and R. W. Wallace, Report on a Radiation Survey Made in Egypt, India and Ceylon in January 1963, Health Physics 12: 935 (1966).CrossRefGoogle Scholar
  47. 47.
    H. A. Wollenberg and A. R. Smith, Studies in terrestrial gamma radiation in “The Natural Radiation Environment”., University of Chicago Press, Chicago (1964).Google Scholar
  48. 48.
    H. A. Wollenberg and A. R. Smith, A concrete low-background counting enclosure, Health Physics 12: 53 (1966).CrossRefGoogle Scholar
  49. 49.
    H. L. Beck, J. DeCampo and C. Gogolak, In Situ Ge(Li) and Nal(Tl) Gamma-Ray Spectrometry, USAEC Health and Safety Laboratory Report NASL-258 (1972).CrossRefGoogle Scholar
  50. 50.
    T. Nakamura, et al., Skyshine of Neutrons and Photons from the INS F M Cyclotron, p. 43, Institute for Nuclear Study, Tokyo Univ. Ann. Report (1975).Google Scholar
  51. 51.
    P. L. Phelps, et al., Ge(Li) Low Level in-situ Gamma Ray Spectrometer Application, IEEE Trans, Nucl. Sci. NS-21, No. 1: 543 (1974).CrossRefGoogle Scholar
  52. 52.
    G. de Planque-Burke and T. F. Gesell, Second International Intercomparison of Environmental Dosimeters, Health Physics 36: 221 (1979).CrossRefGoogle Scholar
  53. 53.
    A. Bonifas, et al., On the Use of Thermoluminescent Dosimetry for Stray Radiation Monitoring on the CERN Site, CERN Health Physics Internal Report HA-74–138 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Ralph H. Thomas
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations