Advertisement

Treatment Planning for Charged Particle Radiotherapy

  • George T. Y. Chen
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)

Abstract

This lecture will cover the general principles involved in treatment planning for charged particle radiotherapy. Development of treatment planning codes for charged particle radiotherapy is being actively pursued at the Massachusetts General Hospital/Harvard Cyclotron (protons), at the Los Alamos Scientific Laboratory (LASL) and at SIN (pions), and at the Lawrence Berkeley laboratory (LBL) (heavy ions). The general outline of the presentation will include (1) a review of beam properties and depth dose distributions used in treatment planning, (2) the use of CT as a quantitative method for evaluating the relative stopping powers of inhomogeneities. (3) treatment planning algorithms currently in use, (4) representative treatment plans and distribution of inhomogeneities, and (5) factors which affect compensator design (such as possible motions, compensator misregistrations, and multiple Coulomb scattering).

Keywords

Dose Distribution Particle Radiotherapy Effective Atomic Number Lawrence Berkeley Laboratory Charged Particle Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abols, V., Genant, H. K., Rosenfeld, D., Boyd, D. P., Ettinger, B. S., and Gordon, G. S., 1978, Spinal bone mineral determination using CT in patients, controls and phantoms, Proceedings of the 4th International Conference on Bone Measurements, University of Toronto, Canada, June 1978.Google Scholar
  2. Alonso, J. R., Howard, J. and Criswell, T., 1979, The BEVALAC radiotherapy facility, Lawrence Berkeley Laboratory, Report LBL-8961.Google Scholar
  3. Amols, H. I., Liska, D. J., and Halbig, J., 1977, Use of a dynamic range shifter for modifying the depth-dose distributions of negative pions, Med, Phys., 4, 404.CrossRefGoogle Scholar
  4. Castro, J. R., Quivey, J. M., Lyman, J. T., Chen, G. T. Y., Kanstein, L. and Walton, R., 1977, Heavy ion radiotherapy, in “Biological and Medical Research with Accelerated Heavy Ions at the BEVALAC., 1974–1977,” Lawrence Berkeley Laboratory, LBL-5610.Google Scholar
  5. Chen, G. T. Y., Singh, R. P., Castro, J. R., Lyman, J. T., and Quivey, J. M., 1979, Treatment planning for heavy charged particle radiotherapy. Int. J. Radiat. Oncd. Biol. Phys. Vol. 5 No. 10, p 1809–1819.CrossRefGoogle Scholar
  6. Crowe, K., Kanstein, L., Lyman, J., and Yeater, F., 1975, A large field medical beam at the 184 in. cyclotron, Lawrence Berkeley Laboratory Report LBL-4235.Google Scholar
  7. Genant, H. K., and Boyd, D., 1977, Quantitative bone mineral analysis using dual energy computerized tomographic scanning, Invest. Radiol., 12, 545 (Abstract).CrossRefGoogle Scholar
  8. Goitein, M., 1978, Compensation for inhomogeneities in charged particle radiotherapy using computed tomography, Int. J. Radiat. Oncol. Biol. Phys., 4, 499.CrossRefGoogle Scholar
  9. Hogstrom, K. R., Smith, A. R., Kligerman, M. M., vonEssen, C. F., Sala, J. M., Mettler, F. A., Kelsey, C. A., Simon, S. L., Somers, J. W., Lane, R. G., Rosen, I. I., Berardo, P. A., and Zink, S. M., 1979, Static pion beam treatment planning of deep seated tumors using CT scans at LAMPS: Clinical aspects, Int. J. Radiat. Oncol. Biol. Phys., Vol. 5, No. 6, pp. 875–886.CrossRefGoogle Scholar
  10. Kijewski, P. K., and Bjarngard, B. E., 1978, The use of computed tomography data for radiotherapy dose calculations, Int. J. Radiat. Oncol. Biol. Phys., 4, 429.CrossRefGoogle Scholar
  11. Koehler, A. M., Schneider, R. J., and Sisterson, J. M., 1977, Flattening of proton dose distributions for large field radiotherapy, Med. Phys., 4., 297.CrossRefGoogle Scholar
  12. Raju, M. R., Gnanapurani, M., Martins, B., Howard, J., and Lyman, J. T., 1972, Measurement of OER and RBE of the 910 MeV helium ion beam using cultured cells (T1), Radiology, 102, 425.Google Scholar
  13. Rutherford, R. A., Pullan, B. R. and Isherwood, I., 1976. Measurement of effective atomic number and electron density using the EMI scanner, Neuroradiology, 11, 15.CrossRefGoogle Scholar
  14. Smith, A. R., Rosen, I. I., Hogstrom, K. R., Lane, R. G., Kelsey, C. A., Amols, H. I., Richman, C., Berardo, P. A., Heiland, J. A., Kittell, R. S., Paciotti, M. A., and Bradbury, J. N., 1977, Dosimetry of pion therapy beams, Med. Phys., 4, 408.CrossRefGoogle Scholar
  15. Witt, R. M., 1973, Bone standards for the intercomparison of photon absorption-metric bone mineral measuring systems, Proceedings, International Conference on Bone Mineral Measurements, Chicago, 1973, DHEW Pub. No. 75–883.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • George T. Y. Chen
    • 1
  1. 1.Biology and Medicine DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations