Dosimetry of Pions

  • J. F. Dicello
  • M. Zaider
  • D. J. Brenner
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


Shortly after the discovery of the negative pion, scientists began to consider the possibility of its application to cancer therapy. Fowler and Perkins (1961) were the first to show quantitatively the potential advantages.


Dose Distribution Treatment Volume Linear Energy Transfer Range Shifter Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amols, H. I., Bradbury, J.N., Dicello, J. F., Helland, J.A., Kligerman, M.M., Lane, T.F., Paciotti, M.A., Roeder, D.L., and Schillaci, M.E., “Dose Outside the Treatment Volume for Irradiation with Negative Pions,” Phys. Med. Biol., 1978, Vol. 23, No. 3, 385–396.CrossRefGoogle Scholar
  2. Amols, H.I., Büche, G., Kluge, W., Matthäy, H., Moline, A., Münchmeyer, D., Schmidt, D., Stabl, F., and Walther, H.P., “Pion Multiple Scattering in Thick Targets of Dosimetric Materials,” to be published in the Proc. of the Int. Conf. on Med. Phys., Jerusalem, Israel, 1979.Google Scholar
  3. Amols, H.I., Dicello, J.F., and Zaider, M., “The RBE at Various Positions In and Near a Large Negative Pion Beam,” Proc. of the 6th Symp. on Microdosimetry, J. Booz and H.G. Ebert, eds. Harwood Academic Publishers, Ltd., 1978a.Google Scholar
  4. Amols, H.I., Liska, D.J., and Halbig, J., “Use of a Dynamic Rangeshifter for Modifying the Depth-Dose Distributions of Negative Pions,” Med. Phys. 4, 1977, p. 404–407.CrossRefGoogle Scholar
  5. Anderson, H.L., Hincks, E.P., Johnson, C.J., Rey, C., and Segar, A.M., “Energy Spectra of Neutrons Emitted Following π-Capture in C, Al, Cd, Pb, and U,” Phys. Rev. 133B, 1964, p. 392–403.ADSCrossRefGoogle Scholar
  6. Armstrong, T.W. and Chandler, K. C., “Calculations Related to the Applications of Negatively Charged Pions in Radiotherapy: Absorbed Dose, LET Spectra, and Cell Survival,” Radiat. Res. 58, 1974, p. 293–328.CrossRefGoogle Scholar
  7. Bagshaw, M.A., Boyd, D.P., Fairbank, W.M., Kaplan, H.S., Li, G.C.C., Schwettman, H.A., and Palos, B.B.,“Clinical Dosimetry for Negative Pi Mesons,” Radiology 108, 1973, p. 197–202.Google Scholar
  8. Berardo, P.A. and Zink, S., private communication.Google Scholar
  9. Bichsel, H., Eenmaa, Weaver K., and Wooton, P., “Attainable Accuracy in Fast Neutron Dosimetry Systems,” Proc. of an Int. Workshop: Particle Radiation Therapy, American College of Radiology, 1975, p. 71–105.Google Scholar
  10. Blaser, J.P., “First Experiences with the Biomedical Pion Beam at SIN — Introduction and Prospects,” Atomkernenergie 27, 1976, p. 146–147.Google Scholar
  11. Brenner, D.J. and Reading, D.H., “A Method for Measuring Neutron Spectra in a Stopping Pion Field,” Nucl. Inst. Meth. 153, 1977, p. 137–144.ADSCrossRefGoogle Scholar
  12. Brenner, D.J. and Smith, F.A., “Dose and LET Distributions due to Neutrons and Photons Emitted from Stopped Negative Pions,” Phys. Med. Biol. 22, 1977, p. 451.CrossRefGoogle Scholar
  13. Cohen, M. and Martin, S.J., “Multiple-Field Isodose Charts,” Vol. II. Atlas of Radiation Dose Distributions, Int. Atomic Energy Agency, Vienna, 1966.Google Scholar
  14. Cooke, D.W. and Hogstrom, K.R., “Thermoluminescent Response of LiF and Li2B4O4:Mn to Pions,” submitted to Phys. Med. Biol. (1979).Google Scholar
  15. Craddock, M.K., Erdman, K.L., and Sample, J.T., “Basic and Applied Research at the TRIUMF Meson Factory,” Nature 270, 1977, p. 671–676.ADSCrossRefGoogle Scholar
  16. Dicello, J.F., “Dosimetry of Pion Beams,” Proc. of an Int. Workshop: Particle Radiation Therapy. American College of Radiology, 1975, p. 155–183.Google Scholar
  17. Dicello, J.F., Fessenden, P., and Henkelman, R.M., “Dosimetry of Beams for Negative Pi-Meson Radiation Therapy,” Int. J. Radiat. Oncol., Biol., Phys. 3, 1977, p. 299–306.CrossRefGoogle Scholar
  18. Dicello, J.F. and Zaider, M., “Investigation of the Microdosimetric Characteristics of Broad, Therapeutic Beams of Negative Pions at LAMPF,” p. 469–481, Proc. of the 6th Symp. on Microdosimetry, Brussels, J. Booz and H.G. Ebert, eds., Harwood Academic Publishers, Ltd., London, 1978.Google Scholar
  19. Dicello, J.F., Zaider, M., and Takai, M., “Some Physical Characteristics of Range-Modulated Beams of Pions,” Proc. of the 3rd Meeting on Fundamental and Practical Aspects of the Application of Fast Neutrons and Other High LET Particles in Clinical Radiotherapy, The Hague, The Netherlands, 1978. In press.Google Scholar
  20. Fowler, P.H. and Perkins, D. H., “The Possibility of Therapeutic Applications of Beams of Negative π--Mesons,” Nature 189, 1961, p. 524–528.ADSCrossRefGoogle Scholar
  21. Geraci, J.P., Jackson, K.L., Christensen, G.M., Thrower, P.D., and Mariano, M., “RBE for Late Spinal Cord Injury Following Multiple Fractions of Neutrons,” Radiat. Res. 74, 1978, p. 382–386.CrossRefGoogle Scholar
  22. Guthrie, M.P., Alsmiller, R.G., and Bertini, H.W., “Calculation of the Capture of Negative Pions in Light Elements and Comparison with Experiments Pertaining to Cancer Radiotherapy,” Nucl. Instr. Meth. 66, 1968, p. 29–36;CrossRefGoogle Scholar
  23. Guthrie, M.P., Alsmiller, R.G., and Bertini, H.W., “Calculation of the Capture of Negative Pions in Light Elements and Comparison with Experiments Pertaining to Cancer Radiotherapy,” Nucl. Instr. Meth. 91, 1971, p. 669.CrossRefGoogle Scholar
  24. Hartmann, R., private communication to Klein (1978).Google Scholar
  25. Hattersley, P.M., Muirhead, H., and Woulds, J.N., “Neutral Radiations Following Pion Capture in Complex Nuclei,” Nucl. Phys. 67, 1965, p. 309–314.CrossRefGoogle Scholar
  26. Hogstrom, K.R. and Amols, H.I., Pion in vivo Dosimetry Using Aluminum Activation, submitted to Med. Phys. (1979).Google Scholar
  27. Hogstrom, K.R., Rosen, I.I., Gelfand, E., Paciotti, M., Amols, H.I., and Luckstead, S., “Calculation of Pion Dose Distributions in Water,” submitted to Med. Phys. (1979).Google Scholar
  28. Hogstrom, K.R., Smith, A.R., Simon, S.L., Somers, J.W., Lane, R.C., Rosen, I.I., Kelsey, C.A., von Essen, C.F., Kligerman, M.M., Berardo, P.A., and Zink, S., “Static Pion Beam Treatment Planning of Deep-Seated Tumors Using Computerized Tomographic Scans at LAMPF,” submitted to Int. J. Radiat., Oncol., Biol., Phys. (1979a).Google Scholar
  29. Kellerer, A.M. and Rossi, H.H., “A Generalized Formulation of Dual Radiation Action,” Radiat. Res. 75, 1978, p. 471–488.CrossRefGoogle Scholar
  30. Kellerer, A.M. and Rossi, H.H., “The Theory of Dual Radiation Action,” Current Topics Radiat. Res. 8, 1972, p. 85–158.Google Scholar
  31. Klein, U., Measurement of Neutron Spectra from the Absorption of Stopped Negative Pions in the Biologically Interesting Nuclei 12C, 14N, and16O. Thesis, University of Karlsruhe, Karlsruhe, West Germany (1978). (In German).Google Scholar
  32. Kligerman, M.M., Smith, A., Yuhas, J.M., Wilson, S., Sternhagen, C.J., Helland, J.A., and Sala, J.M., “The Relative Biological Effectiveness of Pions in the Acute Response of Human Skin,” Int. J. Radiat. Oncol., Biol., Phys. 3, 1977, p. 335–339.CrossRefGoogle Scholar
  33. Kligerman, M.M., West, G., Dicello, J.F., Sternhagen, C.J., Barnes, J.E., Loeffler, K., Dobrowolski, F., Davis, H.T., Bradbury, J.N., Lane, T.F., Petersen, D.F., and Knapp, E.A., “Initial Comparative Response to Peak Pions and X Rays of Normal Skin and Underlying Tissue Surrounding Superficial Metastatic Nodules,” Amer. J. of Roentgenology 126, 1976, p. 261–267.Google Scholar
  34. Knapp, E.A., “Physical Properties of Charged Particle Beams for Use in Radiotherapy,” Proc. of an Int. Workshop: Particle Radiation Therapy. American College of Radiology, 1975, p. 107–136.Google Scholar
  35. Kramer, S. and Suntharalingam, N., “Low-LET Alternatives to Particle Irradiations,” Int. J. Radiat. Oncol, Biol., Phys. 3, 1977, p. 343–349.CrossRefGoogle Scholar
  36. Laughlin, J. S., “Studies of Absorption of High Energy Electron Beams,” p. 11–16, Proc. of the Symp. on High-Energy Electrons, A. Zuppinger and G. Porelti, eds., Springer-Verlag, New York, 1965.CrossRefGoogle Scholar
  37. Leighton, R.B., Principles of Modern Physics, McGraw-Hill, 1959, p. 637.Google Scholar
  38. Li, G.C., Boyd, D., and Schwettman, H.A., “Pion Dose Calculations Suitable for Treatment Planning,” Phys. Med. Biol. 19, 1974, p. 436–447.CrossRefGoogle Scholar
  39. Liska, D. J., “Pi Meson Range Shifter for Clinical Therapy,” Rev. Sci. Instr. 48, 1977, 52–57.ADSCrossRefGoogle Scholar
  40. Mechtersheimer, G., “Measurement of the Energy Spectra of Charged Secondary Particles from the Absorption of Stopped Negative Pions in Carbon Nuclei,” Thesis, University of Karlsruhe, Karlsruhe, West Germany, 1978, (In German).Google Scholar
  41. Paciotti, M.A., Bradbury, J.N., Helland, J.A., Hutson, R.L., Knapp, E. A., Rivera, O.M., Knowles, H.B., and Pfeufer, G., “Tuning of the First Section of the Biomedical Channel at LAMPF,” IEEE Trans. Nucl. Sci., NS-22, 1975, p. 1784–1789.ADSCrossRefGoogle Scholar
  42. Richman, C., Kligerman, M.M., von Essen, C., and Smith, A.R., “High LET Dose Measurements in Patients Undergoing Pion Radiotherapy,” submitted to Radiology (1979).Google Scholar
  43. Schillaci, M.E. and Roeder, D.L., “Dose Distributions Due to Neutrons and Photons Resulting from Negative Pion Capture in Tissue,” Phys. Med. Biol. 18, 1973, p. 821–829.CrossRefGoogle Scholar
  44. Schneuwly, H., “Exotic Atoms,” Proc. of the 1st Course of the Int. School of Physics of Exotic Atoms, G. Fiorentini and G. Torelli, eds., Erice, Italy, April 1977.Google Scholar
  45. Shortt, K.R. and Henkelman, R.M., “A Charge Collector to Determine the Stopping Distribution of a Pion Beam,” Phys. Med. Biol. 23, 1978, p. 495–498.CrossRefGoogle Scholar
  46. Smith, A.R., Rosen, I.I., Hogstrom, K.R., Lane, R.G., Kelsey, C.A., Amols, H.I., Richman, C., Berardo, P.A., Helland, J.A., Kittell, R. S., Paciotti, M.A., and Bradbury, J.N., “Dosimetry of Pion Therapy Beams,” Med. Phys. 4, 1977, 408–413.CrossRefGoogle Scholar
  47. Suit, H. D., Goitein, M., Tepper, J. E., Verhey, L., Koehler, A.M., Schneider, R., and Gradondas, E., “Clinical Experience and Expectation with Protons and Heavy Ions,” Int. J. Radiat. Oncology, Biol., Phys. 3, 1977, p. 115–125.CrossRefGoogle Scholar
  48. Turner, J. E., Dutrannois, J., Wright, H.A., Hamm, R.N., Baarli, J., Sullivan, A.H., Berger, M.J., and Seltzer, S.M., “The Computation of Pion Depth-Dose Curves in Water and Comparison with Experiment,” Radiat. Res. 52, 1972, p. 229–246.CrossRefGoogle Scholar
  49. Wright, H.A., Hamm, R.N., and Turner, J.E., “PION-1. A Monte Carlo Computer Program for Calculations with Negative Pion Beams,” Radiat. Res. 79, 1979, p. 1–21.CrossRefGoogle Scholar
  50. Van Dyke, J. and MacDonald, J. C. F., “Charge Deposition from High Energy Electron Beams,” Radiat. Res. 50, 1972, p. 20–32.CrossRefGoogle Scholar
  51. Zaider, M. and Dicello, J.F., “RBEOER: A FORTRAN Program for the Computation of RBEs, OERs, Survival Curves, and the Effects of Fractionation Using the Theory of Dual Radiation Action,” Los Alamos Scientific Laboratory Report LA-7196-MS (1978).CrossRefGoogle Scholar
  52. Zaider, M., Dicello, J. F., and Bichsel, H., unpublished.Google Scholar
  53. Zink, S. and Perardo, P., “Treatment Planning with Pions: The PIPLAN Approach,” Los Alamos Scientific Laboratory Report No. LA-UR 79–2304 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. F. Dicello
    • 1
  • M. Zaider
    • 1
  • D. J. Brenner
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations