Advertisement

Dosimetry of Neutrons

  • J. J. Broerse
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)

Abstract

To estimate the risks of mixed n-γ radiation fields and to predict the responses of irradiated biological systems, it is essential to obtain a quantitative description of the radiation field or of the energy deposition processes inside an object. For purposes of radiation protection, a rough characterization of the radiation field in terms of type, energy, direction and number of particles is sufficient in most cases. For medical and biological applications, the absorbed dose and the radiation quality have to be determined. The absorbed dose is defined as the quotient of the mean energy imparted by ionizing radiation to the matter in a volume element and the mass of the matter in that volume element.

Keywords

Ionization Chamber Neutron Energy Neutron Beam Linear Energy Transfer Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond, P.R., and Smathers, J.B., 1977, Physics intercomparisons for neutron radiation therapy. Int.J.Radiat.Onc.Biol.Phys,, 3: 169.CrossRefGoogle Scholar
  2. Bewley, D.K., and Page, B.C., 1978, On the nature and significance of the radiation outside the beam in neutron therapy. Brit.J. Radiol,, 51: 375.CrossRefGoogle Scholar
  3. Booz, J., 1978, Mapping of fast neutron radiation quality, in: “Proc. Third Symp. Neutron Dosimetry in Biology and Medicine”, G. Burger and H.G. Ebert, eds., Commission of the European Communities, Luxembourg, EUR 5848, p. 499.Google Scholar
  4. Broerse, J.J., 1979, Collection and evaluation of neutron dosimetry data. Compilation of characteristics of tissue-equivalent ionization chambers (second draft). CENDOS 79–1.Google Scholar
  5. Broerse, J.J., Barendsen, G.W., and Van Kersen, G.R., 1968, Survival of cultured human cells after irradiation with fast neutrons of different energies in hypoxic and oxygenated conditions. Int.J.Radiat.Biol,, 13: 559.CrossRefGoogle Scholar
  6. Broerse, J.J., Burger, G., and Coppola, M., 1978, “A European Neutron Dosimetry Intercomparison Project (ENDIP). Results and Evaluation.” EUR 6004, Commission of the European Communities, Luxembourg.Google Scholar
  7. Broerse, J.J., and Zoetelief, J., 1978, Dosimetric aspects of fast neutron irradiations of cells cultured in monolayer. Int.J.Radiat.Biol,, 33: 383.CrossRefGoogle Scholar
  8. Broerse, J.J., Zoetelief, J., Burger, G., Schraube, H., and Ricourt, A., 1979, “A small scale neutron dosimetry intercomparison”, EUR 6567, Commission of the European Communities, Luxembourg.Google Scholar
  9. Duncan, W., Greene, D., and Major, D., 1971, Radiotherapeutic requirements of 14 MeV fast neutron beams with respect to depth-dose and collimation, Eur.J.Cancer, 7: 129.Google Scholar
  10. ICRU, 1977, “Neutron Dosimetry in Biology and Medicine”, Report 26. International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  11. ICRU, 1978, “An International Neutron Dosimetry Intercomparison”, Report 27. International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  12. ICRU, 1979, “Average Energy Required to Produce an Ion Pair”. Report 31, International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  13. Ito, A., 1978a, Neutron sensitivity of C-CO2 and Mg-Ar ionization chamber, in: “Proc. Third Symp. Neutron Dosimetry in Biology and Medicine”, G. Burger and H.G. Ebert, eds., Commission of the European Communities, Luxembourg, EUR 5848, p. 605.Google Scholar
  14. Ito, A., 1978b, Neutron dosimetry intercomparison between Japan (University of Tokyo) and USA, in: “Proc. Third Symp. Neutron Dosimetry in Biology and Medicine”, G. Burger and H.G. Ebert, eds., Commission of the European Communities, Luxembourg, EUR 5848, p. 113.Google Scholar
  15. Kellerer, A.M., and Rossi, H.H., 1972, The theory of dual radiation action, Curr.Top.Radiat.Res.Quart,, 8: 85.Google Scholar
  16. Makarewicz, M., and Pszona, S., 1978, Theoretical characteristics of a graphite ionization chamber filled with carbon dioxide, Nucl.Inst.Meth,, 153: 423.ADSCrossRefGoogle Scholar
  17. Mijnheer, B.J. and Broerse, J.J., 1979, Dose distributions of clinical fast neutron beams, Eur.J.Cancer, suppl,, p. 109.Google Scholar
  18. Mijnheer, B.J., Visser, P.A., Lewis, V.E., Guldbakke, S., Lesiecki, H., Zoetelief, J., and Broerse, J.J., 1979, The relative neutron sensitivity of Geiger-Müller counters, Eur.J.Cancer, suppl,, p. 162.Google Scholar
  19. Mijnheer, B.J., Zoetelief, J., and Broerse, J.J., 1978, Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy, Brit.J.Radiol,, 51: 122.CrossRefGoogle Scholar
  20. Parnell, C.J., 1974, Depth dose characteristics and beam profile properties of cyclotron-produced neutron beams. Eur.J.Cancer, 10: 335.Google Scholar
  21. Waterman, F.M., Kuchnir, F.T., Skaggs, L.S., Kouzes, R.T., and Moore, W.H., 1979, Energy dependence of the neutron sensitivity of C-CO2, Mg-Ar, and TE-TE ionization chambers, Phys.Med.Biol,, 24: 721.CrossRefGoogle Scholar
  22. Wootton, P., and Eenmaa, J., 1978, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. J. Broerse
    • 1
  1. 1.Radiobiological Institute TNORijswijkThe Netherlands

Personalised recommendations