Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 2))

Abstract

In this lecture I shall interpret the term “passive” radiation detector as meaning one that will yield up its information after an irradiation is completed, and often only after some processing of the detector to obtain the data or some considerable data processing. Examples of such detectors would thus be:

  1. (1)

    Nuclear Emulsion.

  2. (2)

    Activation Detectors (often imprecisely referred to as threshold detectors).

  3. (3)

    Integrating Ionization Chambers.

  4. (4)

    Thermoluminescent Dosimeters.

“They also serve who only stand and wait” John Milton, 1608–1674, Sonnet XIX “On His Blindness”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. F. Powell, 1959, “The Study of Elementary Particles by the Photographic Method,” Pergamon Press, Oxford.

    Google Scholar 

  2. R. H. Thomas, 1972, High Energy Heavy Ions, Phys Bull. 23: 143.

    Google Scholar 

  3. H. A. Grunder et al., 1971, Acceleration of Heavy Ions at the Bevatron Science, 174: 1128.

    Article  ADS  Google Scholar 

  4. A. Citron, L. Hoffmann and C. Passow, 1961, Nucl. and Meth.14: 97.

    Article  ADS  Google Scholar 

  5. R. H. Thomas (ed.), 1963, Report of the Shielding Conference held at the Rutherford Laboratory, Sept. 26–27th, 1962, Rutherford Laboratory Report NIRL/R/40.

    Google Scholar 

  6. H. Bindewald et al., 1965, Shielding Studies in Steel with 10 and 20 GeV/e Protrons, Parts 1-V, Nucl. Inst. and Methods32: 45.

    Google Scholar 

  7. R. L. Childers, C. D. Zerby, C. M. Fisher and R. H. Thomas, 1965, Measurement of the Nuclear Cascade at 10 GeV/c with Emulsions, Part III op. citRef. 6.

    Google Scholar 

  8. A. R. Smith, L. D. Stephens and R. H. Thomas, 1961, Dosimetry for Radiobiological Experiments, Health Physics, 32: 343 (1977).

    Article  Google Scholar 

  9. A. R. Smith and R. H. Thomas, The Production of UC by the Interaction of 375 MeV/amu Ne10+ions with carbon, Nucl. Inst and Methods. 137: 459.

    Google Scholar 

  10. J. W. Patrick, L. D. Stephens, R. H. Thomas and L. S. Kelly, 1975, The Efficiency of ′LiF Thermoluminescent Dosimeters for Measuring 250 MeV/amu 6+C ions, Health Physics28: 614.

    Google Scholar 

  11. J. W. Patrick, L. D. Stephens, R. H. Thomas and L. S. Kelly, 1976, The Efficiency of 7LiF Thermoluminescent Dosimeters to High-LET particles, relative to 60Co γ-rays, Health Physics30: 295.

    Google Scholar 

  12. A. M. Henson and R. H. Thomas, 1978, Measurement of the Efficiency of 7LiF Thermoluminescent Dosimeters to Heavy Ions, Health Physics34: 389 (1978).

    Google Scholar 

  13. J. W. Patrick, L. D. Stephens, R. H. Thomas and L. S. Kelly, 1975, The Design of an Experiment to Study Leukemogenisis in Mice Irradiated by Energetic Heavy Ions, Rad. Res.64: 492.

    Article  Google Scholar 

  14. L. S. Kelly, S. J. Daniels, and R. H. Thomas, 1977, Life Shortening and Leukemogenic Effects of a High-Energy Carbon-Ion Beam I: Irradiation of Young RF Mice, Lawrence Berkeley Laboratory internal report, HPN 92, September 1977 (unpublished).

    Google Scholar 

  15. L. S. Kelly and R. H. Thomas, 1977, Life Shortening and Leukemogenic Effects of a High-Energy Carbon-Ion Beam II: Irradiation of Middle-Aged RF Mice, Lawrence Berkeley Laboratory internal report, HPN 93, September 1977 (unpublished).

    Google Scholar 

  16. R. V. Griffith, D. E. Hankins, R. B. Gammage, L. Tommasino and R. V. Wheeler, 1979, Recent Developments in Personnel Neutron Dosimeters, A Review, Health Physics36: 235.

    Article  Google Scholar 

  17. K. Becker, 1973, “Solid State Dosimetry,” CRC Press, Cleveland, OH.

    Google Scholar 

  18. J. Jasiak and T. Musialowicz, 1973, “Personnel Monitoring in Poland,” in Proc. I.AE.A. Symp. on Neutron Monitoring for Radiation Protection Purposes, Vol. 1: 191, I.AE.A., Vienna.

    Google Scholar 

  19. K. Becker, 1973, Long Term Stability of Film, TLD and other Intergrating Dosimeters in Warm and Humid Climates, Oak Ridge National Laboratory Report ORNL-TM-4297.

    Google Scholar 

  20. P. N. Krishnamoorthy, G. Venkataramon, D. Singh and Dayashankar, 1973, “Comparison of Various Neutron Personnel Dosimeters” in Proc. Symp. Neutron Monitoring for Radiation Protection Purposes, Vol. II., p. 343, IAEA, Vienna.

    Google Scholar 

  21. A. Knight, 1974, Fading of Proton Recoil Tracks in Nuclear Emulsions, Health Physics, 27: 606.

    Google Scholar 

  22. A. M. Sayed and E. Piesch, 1974, Study of the Latent Fading of the NTA film and Track Etching Detectors at Various Temperatures and Humidities, Kernforschungszentrum, Karlsruhe, Internal Report KFK-2032.

    Google Scholar 

  23. R. H. Thomas, 1973, “Neutron Dosimetry at High-Energy Particle Accelerators in Neutron Monitoring for Radiation Protection Purposes,” Vol. I, p. 327, IAEA, Vienna.

    Google Scholar 

  24. H. W. Patterson et al., 1972, An Evaluation of the Potential of Thick Nuclear Emulsions for Use as a High Energy Neutron Personal Dosimeter, Health Physics Group, Lawrence Berkeley Laboratory Internal Report No. 160.

    Google Scholar 

  25. R. H. Thomas, 1973, Personnel Neutron Dosimetry Studies at the Lawrence Berkeley Laboratory, Lawrence Berkeley Laboratory Report LBL-2057.

    Google Scholar 

  26. H. W. Patterson and R. H. Thomas, 1973, Radiation Measurements, in “Accelerator Health Physics,” Academic Press, New York.

    Google Scholar 

  27. R. L. Lehmann and O. M. Fekula, 1964, Energy Spectra of Stray Neutrons from the Bevatron, Nucleonics22 (No. 11): 35.

    Google Scholar 

  28. R. Remy, 1965, Neutron Spectroscopy by the Use of Nuclear Stars from 20–300 MeV (M. S. Thesis) Lawrence Berkeley Laboratory Report UCRL-16325.

    Google Scholar 

  29. H. W. Patterson, H. Heckmann and J. T. Routti, 1969, “New Measurements of Star Production in Nuclear Emulsions and Applications to High-Energy Neutron Spectroscopy,” in Proc. Sec. Conference Acc. Dos. Stanford, California. Nov. 1969. USAEC Report — CONF-691101 p. 750.

    Google Scholar 

  30. W. S. Gilbert, et al., 1968, 1966 CERN-LRL-RHEL Shielding Experiment. Lawrence Berkeley Laboratory Report UCRL-17941.

    Book  Google Scholar 

  31. A. H. Sullivan, 1969, “The Present Status of Instrumentation for Accelerator Health Physics,” in Proc. 2nd Int. Conf. on Accelerator Dosimetry and Experience, Stanford, California, Nov. 1969, CONF-691101.

    Google Scholar 

  32. D. R. Perry, 1967, Neutron Dosimetry Methods and Experience on the 7 GeV Proton Synchrotron, Nimrod, in “Neutron Monitoring, Neutron Monitoring,” Proc. Symp. Vienna, 1966, p. 355, IAEA, Vienna.

    Google Scholar 

  33. A. R. Smith, 1965, Threshold Detector Applications to Neutron Spectroscopy at the Berkeley Accelerators, in “Proc. First Symp. Acc. Rad. Dos.” Brookhaven National Laboratory USAEC Report, CONF-651109, p 224.

    Google Scholar 

  34. A. R. Smith, 1965, Some Experimental Shielding Studies at the Bevatron, op. cit. ref. 33, p 365.

    Google Scholar 

  35. V. Perez-Mendez, 1979, Instrumentation—Active Detectors Lecture No. 9 in “Advances in Radiation, Protection and Dosimetry in Medicine,” Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy.

    Google Scholar 

  36. R. H. Thomas, 1979, Radiation Monitoring, Lecture No. 26, in Radiation Protection and Dosimetry in Medicine, Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy.

    Google Scholar 

  37. R. L. Bramblett, R. I. Ewing, T. W. Bonner, 1960, A New Type of Spectrometer, Nucl. Instrum. Meth.9 (1960); 1.

    Article  ADS  Google Scholar 

  38. H. W. Patterson and R. H. Thomas, 1971, Experimental Shielding Studies—A Review, Particle Accelerators2: 77.

    Google Scholar 

  39. J. T. Routti, 1969, “Mathematical Considerations of Determining Neutron Spectra from Activation Measurements,” in Proc. Second Int. Conf. on Acc. Dos. Stanford, USAEC Report CONF 691101, p 494.

    Google Scholar 

  40. L. D. Stephens, J. B. McCaslin, A. R. Smith, R. H. Thomas, J. E. Hewitt, L. Hughes, 1978, Ames Collaborative Study of Cosmic Ray Neutrons, II Low and Mid-latitude Flights, Lawrence Berkeley Laboratory Report LBL-6738.

    Book  Google Scholar 

  41. J. B. McCaslin, A. R. Smith, L. D. Stephens, R. H. Thomas, T. M. Jenkins, G. T. Warren and J. W. Baum, 1977, An Inter-comparison of Dosimetry Techniques in Radiation Fields at High-Energy Accelerators, Health Physics33: 611.

    Article  Google Scholar 

  42. H. de Staebler, 1979, Similarity of Shielding Problems at Electron and Proton Accelerators, op cit Ref. 33, p 429.

    Google Scholar 

  43. W. N. Hess, H. W. Patterson, R. W. Wallace, E. L. Chupp, 1959, The Cosmic Ray Neutron Energy Spectrum, Phys. Rev.116: 445.

    Article  ADS  Google Scholar 

  44. T. W. Armstrong, K. C. Chandler and J. Barish, 1972, Calculation of the Neutron Spectrum in the Earth’s Atmosphere Produced by Galactic Cosmic Rays, Neutron Physics Division Annual Rep., ORNL-4800, p. 63.

    Google Scholar 

  45. A. R. Smith, 1974, Activation Element Monitoring for Mouse Irradiations (Lola Kelly Bevalac Run, 11/28/74), Lawrence Berkeley Laboratory, Health Physics Department Internal Note, HPN 21.

    Google Scholar 

  46. A. R. Smith and H. Wollenberg, 1966, A Low Background Counting Enclosure, Health Physics12: 53.

    Article  Google Scholar 

  47. A. R. Smith, 1974, Distribution of Fluorine-18 and Na-24 in Thick Aluminum Stack Irradiated in 380 MeV/N Neon Beam, Lawrence Berkeley Laboratory, Health Physics Department Internal Note.

    Google Scholar 

  48. C. A. Tobias, A. Chatterjee and A. R. Smith, 1971, Radioactive Fragmentation of N7+Ion Beam Observed in a Beryllium Target, Physics Letters, 37A, α2.

    Google Scholar 

  49. A. R. Smith, 1975, Lawrence Berkeley Laboratory, Private communication.

    Google Scholar 

  50. Private Communication.

    Google Scholar 

  51. L. D. Stephens, R. H. Thomas and L. S. Kelly, 1976, A Measurement of the Average Energy Required to Create An Ion Pair in Nitrogen by 250 MeV/amu C6+Ions, Phip. Med. Biol.21: 570.

    Article  Google Scholar 

  52. R. H. Thomas, J. T. Lyman, and T. M. de Castro, 1979, A Measurement of the Average Energy Required to Create an Ion Pair in Nitrogen by High-Energy Ions, Lawrence Berkeley Laboratory Report, LBL-6710, Rev. 2.

    Google Scholar 

  53. G. N. Whyte, 1963, Energy per Ion Pair for Charge Particle in Gases, Radiat. Res.18: 265–271.

    Article  Google Scholar 

  54. C. J. Bakker and E. Segre, 1961, Stopping Power and Energy Loss for Ion Pair Production for 300 MeV Protons, Phys Rev.81: 489–492.

    Article  ADS  Google Scholar 

  55. M. N. Varma, J W. Baum and A. V. Kuhner, 1977, Radial dose, LET and w for 16O Ions in N2and Tissue Equivalent Gases. Radiat. Res.70: 511–518.

    Article  Google Scholar 

  56. M. N. Varma, J. W. Baum and A. V. Kuhner, 1975, Experimental Determination of w. for Oxygen Ions in Nitrogen, Phys. Med. Biol.20: 955.

    Article  Google Scholar 

  57. K. Becker, 1973, “Solid State Dosimetry,” CRC Press, Cleveland.

    Google Scholar 

  58. G. de Planque and T. F. Gesell, 1979, Second International Intercomparison of Environmental Dosimeters. Health Physics, 36: 221.

    Article  Google Scholar 

  59. J. R. Cameron, N. Suntharlingham and G. N. Kenney, 1968, “Thermoluminescent Dosimetry,” University of Wisconsin Press, Madison.

    Google Scholar 

  60. B. Jähnert, 1972, The Response of TLD-700 Thermoluminescent Dosimetry to Protons and Alpha Particles, Health Physics, 23: 112–115.

    Google Scholar 

  61. H. Grunder, ed., 1973, Heavy Ion Facilities and Heavy Ion Research at Lawrence Berkeley Laboratory, Lawrence Berkeley Laboratory Report LBL-2090.

    Google Scholar 

  62. E. Schopper, et al., 1972, Review an AgCl Crystals as Visual Detectors of Nuclear Particles, in Proc. 8th Int. Conf. on Nuclear Photgraphy and Visual Detectors, Bucharest.

    Google Scholar 

  63. P. G. Stewart, 1968, Stopping Power and Range for Any Nucleus in the Specific Energy Interval 0.01 to 500 MeV/amu in Any Non-Gaseous Material, Lawrence Berkeley Laboratory Report, UCRL-18127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, R.H. (1980). Passive Detectors. In: Thomas, R.H., Perez-Mendez, V. (eds) Advances in Radiation Protection and Dosimetry in Medicine. Ettore Majorana International Science Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1715-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1715-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1717-4

  • Online ISBN: 978-1-4757-1715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics