Multicomponent Conservation Equations

  • Clayton T. Crowe
  • L. Douglas Smoot

Abstract

There are two fundamentally different ways to describe the motion of a fluid: Lagrangian or Eulerian. From the Lagrangian point of view, the flow field is regarded as the motion of numerous small, contiguous fluid elements which interact through pressure and viscous forces. The motion of each fluid element behaves according to Newton’s second law of motion. Though appealing to the student of Newtonian mechanics, this approach is generally impractical to describe the flow of a continuum because of the large number of mass elements needed to achieve a reasonably accurate description of the flow field. On the other hand, the Lagrangian approach is worthy of consideration for dispersed two-phase flows (gas-particle, gas-droplet) in that the particles or droplets themselves naturally constitute individual mass elements.

Keywords

Burning Enthalpy Kelly Gasification Paral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Truesdell and R. Toupin, The classical field theories, in Encyclopedia of Physics ( S. Flügge, ed.), Springer-Verlag, Berlin (1960).Google Scholar
  2. 2.
    D. A. Drew, Averaged field equations for two-phase media, Stud. Appl. Math. 50 (2), 133–136 (1971).Google Scholar
  3. 3.
    C. T. Crowe, M. P. Sharma, and D. E. Stock, The particle source in cell (PSI-cell) model for gas-droplet flows, J. Fluids Eng. 99 (2), 325–332 (1977).CrossRefGoogle Scholar
  4. 4.
    W. J. Comfort, T. W. Alger, W. H. Giedt, and C. T. Crowe, Calculation of two-phase dispersed droplets in vapor flows including normal shock waves, J. Fluids Eng. (1978), in press.Google Scholar
  5. 5.
    C. T. Crowe, Conservation Equation for Vapor-Droplet Flows including Boundary Droplet effects, UCRL-52184, Lawrence Livermore Laboratories, California (1977).Google Scholar
  6. 6.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York (1960).Google Scholar
  7. 7.
    S. Penner, Chemistry Problems in Jet Propulsion, Pergamon Press, New York (1957).Google Scholar
  8. 8.
    W. Nachbar, F. Williams, and S. S. Penner, The conservation equations for independent coexisting continua and for multicomponent reacting gas mixtures, Quart. Appl. Math 17 (1), 43–54 (1959).Google Scholar
  9. 9.
    C. T. Crowe, M. P. Sharma, and D. E. Stock, Numerical modeling in design of multiphase flow systems, in Proceedings of the First International Conference on Mathematical Modeling, Vol. 3 (X. J. R. Avula, ed.), pp. 1249–1258, University of Missouri, Rolla, Missouri (1977).Google Scholar
  10. 10.
    P. D. Kelly, A reacting continuum, Int. J. Eng. Sci. 2, 129–153 (1964).CrossRefGoogle Scholar
  11. 11.
    R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids-Their Estimation and Correlation, 2nd ed., McGraw-Hill Book Co., New York (1966).Google Scholar
  12. 12.
    E. P. Bartlett, R. M. Kendall, and R. A. Rindal, An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator, Part IV: A Unified Approximation for Mixture Transport Properties for Multicomponent Boundary Layer Applications, NASA CR-1063, Itec Corp., Vidya Division, Palo Alto, California (1966).Google Scholar
  13. 13.
    A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus, and L. B. Anderson, Principles of Unit Operations, John Wiley and Sons, New York (1960).Google Scholar
  14. 14.
    J. Jeans, An Introduction to the Kinetic Theory of Gases, p. 43, The University Press, Cambridge, England (1962).Google Scholar
  15. 15.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, p. 530, John Wiley and Sons, New York (1954).Google Scholar
  16. 16.
    C. R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18, 517 (1950).CrossRefGoogle Scholar
  17. 17.
    R. B. Bird, Diffusion in multicomponent gas mixtures, Kaguku Kogaku 26, 718 (1962).Google Scholar
  18. 18.
    L. A. Bromley, Thermal Conductivity of Gases at Moderate Pressures, University of California Radiation Lab, UCRL-1852, Berkeley, California (June 1952).Google Scholar
  19. 19.
    S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases, 2nd ed., Cambridge University Press, England (1951).Google Scholar
  20. 20.
    E. A. Mason and S. C. Saxena, Approximate formula for the thermal conductivity of gas mixtures, Phys. Fluids 1, 361 (1958).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Clayton T. Crowe
    • 1
  • L. Douglas Smoot
    • 2
  1. 1.Washington State UniversityPullmanUSA
  2. 2.Brigham Young UniversityProvoUSA

Personalised recommendations