Advertisement

The Influence of Turbulence on Current Interruption

  • G. R. Jones
Part of the Earlier Brown Boveri Symposia book series (EBBS)

Summary

Optical measurements have convincingly established the existence of turbulence in a gas blast arc downstream of the nozzle throat, during the current zero period. The turbulence appears to be produced in the shear layer separating the high velocity plasma flow from the surrounding, low velocity, imposed flow field. These vortex shear layers have similar properties to those of free jets and wakes, about which much information exists in the literature.

Recent measurements of local voltages along the axial extent of a gas blast arc have shown a rapid electrical decay before current zero along the arc region downstream of the nozzle throat where pronounced turbulence occurs. The plasma decay rate in this region is not explicable in terms of convection and radial thermal diffusion, suggesting that turbulent diffusion has a significant effect. Approximate calculations indicate that the properties of the observed turbulence are consistent with the enhanced recovery measured electrically. However, it is also clear that other power loss processes occurring upstream of the nozzle throat are important even close to current zero in conditioning the arc column for final extinction.

A direct theoretical prediction of the arc electrical behaviour from measured turbulent properties would clearly provide indisputable evidence of the importance of turbulence for arc quenching. Unfortunately such an approach is still plagued by uncertainties in the values of the turbulent parameters required theoretically. Nonetheless encouraging progress is currently being made in correctly predicting electrical recovery characteristics with a semi-empirical arc model involving turbulence.

Keywords

Nozzle Throat Turbulent Heat Transfer Current Zero Vortex Shear Layer Axisymmetric Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Slepian, Trans. AISE 60 (1941) 162Google Scholar
  2. 2.
    B. W. Swanson and R. M. Roidt, Proc. IEEE 59 (1971) 493CrossRefGoogle Scholar
  3. 3.
    L. Niemeyer and K. Ragaller, Z. Naturforsch. 28a (1973) 1281Google Scholar
  4. 4.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller, and E. Schade, J. Phys. D: Appl. Phys. 7 (1974) 1703CrossRefGoogle Scholar
  5. 5.
    D. O. Rockwell, J. Appl. Mech. 39 (1972) 883CrossRefGoogle Scholar
  6. 6.
    D. O. Rockwell and W. O. Niccolls, J. Basic Eng. 94 (2972) 720CrossRefGoogle Scholar
  7. 7.
    H. A. Becker and T. A. Massaro, J. Fluid Mech. 31 (1968) 435CrossRefGoogle Scholar
  8. 8.
    A. M. Howatson and D. R. Topham, J. Phys. D: Appl. Phys. 9 (1976) 1101CrossRefGoogle Scholar
  9. 9.
    I. R. Bothwell, K. O. Goodwin and B. Grycz, Univ. Liverpool Arc Res. Rep. ULAPT 29 (1974)Google Scholar
  10. 10.
    H. L. Walmsley, G. R. Jones, F. Haji and D. C. Strachan, J. Phys. D: Appl. Phys. 10 (1977) 383CrossRefGoogle Scholar
  11. 11.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller, and E. Schade, IEEE Trans. PAS 95 (1976) 1165Google Scholar
  12. 12.
    G. R. Jones and H. Edels, Z. Phys. 229 (1969) 14CrossRefGoogle Scholar
  13. 13.
    G. Frind and B. L. Damsky, ARE report 68–0067 April (1968)Google Scholar
  14. 14.
    R. J. Hill, G. R. Jones and H. Edels, Proc. 3rd Int. Conf. on Gas Discharges, IEE Conf. Public No. 118 p. 506–511Google Scholar
  15. 15.
    B. W. Swanson, R. M. Roidt and T. E. Browne, IEEE Trans. PAS 89 (1970) 1094Google Scholar
  16. 16.
    D. R. Topham, J. Phys. D: Appl. Phys. 5 (1972) 1837CrossRefGoogle Scholar
  17. 17.
    G. R. Jones and S. R. Naidu, J. Phys. D: Appl. Phys. 7 (1974) 2254CrossRefGoogle Scholar
  18. 18.
    A. Chapman, G. R. Jones and D. C. Strachan, Proc. 4th Int. Conf. on Gas Discharges, IEE Conf. Public No. 143 (1976) p. 52–55Google Scholar
  19. 19.
    S. K. Chan, M. D. Cowley and M. T. C. Fang, Univ. Liverpool Arc Res. Rep. ULAPT 26 (1974)Google Scholar
  20. 20.
    J. M. Yos, AVCO Report RAD-TM-63–7 (1967)Google Scholar
  21. 21.
    W. Hermann and K. Ragaller, IEEE Trans PAS 96 (1977) 1546CrossRefGoogle Scholar
  22. 22.
    G. Frind, R. E. Kinsinger, R. D. Miller, H. T. Nagamusu and H. O. Noeske, Final report (Research project 246–1) EPRI EL-284 (1977)Google Scholar
  23. 23.
    A. A. Hudson, The Engineer, 200 (1955) 249–252, 288–290Google Scholar
  24. 1.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller, E. Schade, IEEE Trans. PAS 95 (1976) 1165CrossRefGoogle Scholar
  25. 2.
    R. J. Hill, G. R. Jones and H. Edels, Proc. 3rd Int. Conf. on Gas Discharges, IEE Conf. Public No. 118, p. 506 - 511Google Scholar
  26. 3.
    B. W. Swanson and R. M. Roidt, Proc. IEEE 59 (1971) 493CrossRefGoogle Scholar
  27. 4.
    R. J. Hill, ‘Wall stabilised axial flow arcs’, Ph.D. Thesis, University of Liverpool, University of Liverpool, 1973Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • G. R. Jones
    • 1
  1. 1.Department of Electrical EngineeringUniversity of LiverpoolLiverpoolEngland

Personalised recommendations