Geobotany pp 95-107 | Cite as

A Geobotanical Overview of the Bryophyta

  • Harvey A. Miller


Macroevolution of mosses is considered from viewpoints of the fossil record, relative orientations of continents, paleoclimatology, morphology, and distributional phenomena. Incomplete evidence indicates: 1) mosses are offshoots of early rhyniophyte and zosterophyllophyte stock; 2) Sphagnales were set off well before the end of the Permian; 3) Bryales, in the broadest sense, were diverse and widely distributed by Permian time in mesic to wet, temperate sites; 4) diversity among all groups of bryophytes was considerably reduced by the PermoTriassic desert episodes on most major land masses; 5) the present-day moss generic flora has changed little since the close of Cretaceous time and has a preponderance of drought-resistant groups some of which extend back to the Paleozoic; and 6) present day diversity reflects radiate evolution by survivors of the desert episodes into new niches created by the ascendancy of angiospermous vegetation.


Fossil Record Middle Devonian Lower Devonian Continental Drift Central Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banks, H. P. 1968a. The early history of land plants. pp. 73–107. In Drake, E. T. (ed.) Evolution and Environment. Yale Univ. Press. New Haven.Google Scholar
  2. Banks, H. P. 1968b. The stratigraphic occurrence of early land plants and its bearing on their origin. pp. 721–730. In Oswald. D. H. (ed.) Proc. Internat. Symp. on the Devonian System. Calgary, Canada.Google Scholar
  3. Banks, H. P., and M. R. Davis. 1969. Crenaticaulis, a new genus of Devonian plants allied to Zosterophyllum, and its bearing on the classification of early land plants. Amer. J. Bot. 56: 436–449.CrossRefGoogle Scholar
  4. Bold, H. C. 1973. Morphology of Plants. 3rd edition. Harper and Row. New York.Google Scholar
  5. Brown, J. T., and C. R. Robison. 1974. Diettertia montanensis, gen. et sp. nov., a fossil moss from the Lower Cretaceous Kootenai Formation of Montana. Bot. Gaz. 135: 170–173.CrossRefGoogle Scholar
  6. Finocchio, A. F. 1967. Pitting of cells in moss gametophores. Bull. Torrey Bot. Club 94: 18–20.CrossRefGoogle Scholar
  7. Gensel, P., A. Kasper and H. N. Andrews. 1969. Kaulangiophyton, a new genus of plants from the Devonian of Maine. Bull. Torrey Bot. Club 96: 261–276.CrossRefGoogle Scholar
  8. Hébant, C. 1964. Signification et évolution des tissus conducchez les bryophytes. Nat. Monspeliensia Ser. Bot. 16: 79–86.Google Scholar
  9. Hébant, C. 1967. Sur la comparison des tissus conducteurs des bryophytes et des plantes vasculaires. Compt. Rend. Acad. Sci. Paris Ser. D. 264: 901–903.Google Scholar
  10. Heuber, F. M. 1971. Sawdonia ornata: a new name for Psilophyton princeps var. ornatum. Taxon 20: 641–642.Google Scholar
  11. Kawai, I. 1971a. Systematic studies on the conducting tissue of the gametophyte in Musci (2). On the affinity regarding the inner structure of the stem in some species of Dicranaceae, Bartramiaceae, Entodontaceae and Fissidentaceae. Ann. Rept. Bot. Gard. Fac. Sci. Univ. Kanazawa 4: 18–39.Google Scholar
  12. Kawai, I. 1971b. Systematic studies the gametophyte in Musci (3). on the conducting tissue of On the affinity regarding the some species of Thuidiaceae. inner structure of the stem in Sci. Rept. Kanazawa Univ. 16: 21–60.Google Scholar
  13. Kawai, I. 1971c. Systematic studies on the conducting tissue of the gametophyte in Musci (4). On the affinity regarding the inner structure of the stem in some species of Mniaceae. Sci. Rept. Kanazawa Univ. 16: 83–111.Google Scholar
  14. Khanna, K. R. 1964. Differential evolutionary activity in bryophytes. Evolution 18: 652–670.CrossRefGoogle Scholar
  15. King, L. C. 1961. The palaeoclimatology of Gondwanaland during the Palaeozoic and Mesozoic Eras. pp. 307–331. In Nairn, A. E. M. (ed.) Descriptive Palaeoclímatology. Interscience. New York.Google Scholar
  16. Lemoigne, Y. 1969. Observation d’archegones portes par des axes du type Rhynia gwynne-vaughanii Kidston et Lang. Existence de gametophytes vascularises au Devonien. Compt. Rend. Acad. Sci. Paris Ser. D. 267: 1655–1657.Google Scholar
  17. Lemoigne, Y. 1970. Nouvelles diagnoses du genre Rhynia et de l’espece Rhynia gwynne-vaughanii. Bull. Soc. Bot. France 117: 307–320.Google Scholar
  18. Merker, H. 1958. Zum fehlenden Gliede der Rhynienflora. Bot. Not. 111: 608–618.Google Scholar
  19. Miller, H. A. 1974a. Rhyniophytina, alternation of generations, and the evolution of bryophytes. J. Hattori Bot. Lab. 38: 161–168.Google Scholar
  20. Miller, H. A. 1974b. Hepaticae through the ages. Revista Fac. Cien. Lisboa 17: 763–775.Google Scholar
  21. Schopf, J. M. 1970. Relation of floras of the southern hemisphere to continental drift. Taxon 19: 657–674.CrossRefGoogle Scholar
  22. Schwarzbach, M. 1961. The climatic history of Europe and North America. pp. 255–291. In Nairn, A. E. M. (ed.) Descriptive Palaeoclimatology. Interscience. New York.Google Scholar
  23. Steere, W. C. 1969. A new look at evolution and phylogeny in bryophytes. Current Topics in Plant Science 1969: 134–143.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Harvey A. Miller
    • 1
  1. 1.Florida Technological UniversityOrlandoUSA

Personalised recommendations