The Study of Intracellular Particle Motion by Laser Light Scattering

  • D. B. Sattelle
  • G. M. Langford
  • K. H. Langley
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 23)


In all eukaryotic cells the movements of cytoplasm can be observed at some stage during development. Such movements may be involved either in translocation of cytoplasmic components within the cell, or in the generation of forces resulting in the movement of the cell over the substratum. Recent biochemical studies have demonstrated the existence of at least two classes of cellular structures which are involved in generating movements in a wide variety of cell types1, 2, 3, 4. The first of these systems involves the interaction of microfilaments composed of the proteins actin and myosin, resulting in local contractions5 — a mechanism similar in many essential features to the contraction of vertebrate striated muscle6. A second major kind of motile machinery is based on the interaction of microtubules3,7 either with one another or with microfilaments.


Autocorrelation Function Cytoplasmic Streaming Streaming Velocity Brain Tubulin Intensity Autocorrelation Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.E. Huxley, Nature (Lond.) 243, 445, 1973.ADSCrossRefGoogle Scholar
  2. 2.
    T.D. Pollard and R.D. Weihing, C.R.C. Crit. Rev. Biochem. 2, 1, 1974.CrossRefGoogle Scholar
  3. 3.
    D. Soifer (Ed.), Ann. N.Y. Acad. Sci. 253, pp. 1–848, 1975.Google Scholar
  4. 4.
    R.D. Goldman, T.D. Pollard and J.L. Rosenbaum (Eds.), Cold Spring Harbour conferences on cell proliferation Vol. 3. Cold Spring Harbour Laboratory, Cold Spring Harbour, N.Y. (in press), 1976.Google Scholar
  5. 5.
    T.D. Pollard, in Molecules and Cell Movement (Eds. S. Inoue and R.E. Stephens) 259, 1975.Google Scholar
  6. 6.
    H.E. Huxley, Science 164, 1356, 1969.Google Scholar
  7. 7.
    J.B. Olsmted and G.G. Borisy, Ann. Rev. Biochem. 42, 507, 1973.CrossRefGoogle Scholar
  8. 8.
    H. Komnick, W. Stockem and K.E. Wohlfarth-Botterman, Int. Rev. Cytol. 34, 169, 1973.CrossRefGoogle Scholar
  9. 9.
    R.C. Weisenberg, Science 177, 1104, 1972.ADSCrossRefGoogle Scholar
  10. 10.
    G.G. Borisy, J.M. Marcum, J.B. Olmsted, D.B. Murphy and K.A. Johnson, Ann. N.Y. Acad. Sci. 253, 107, 1975.ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Shelanski, F. Gaskin and C.R. Cantor, Proc. natn. Acad. Sci. U.S.A. 70, 765, 1973.ADSCrossRefGoogle Scholar
  12. 12.
    R. Asch and N.C. Ford, Jr., Rev. Sci. Instrum. 47, 108, 1973.Google Scholar
  13. 13.
    J.S. Gethner, G.W. Flynn, B.J. Berne and F. Gaskin, Bull. Am. Phys. Soc. 21, 58, 1976.Google Scholar
  14. 14.
    J.C. Brown, P.N. Pusey and R. Dietz, J. Chem. Phys. 62, 1136, 1975.ADSCrossRefGoogle Scholar
  15. 15.
    K.H. Langley, R.W. Piddington, D. Ross and D.B. Sattelle, Biochim. Biophys. Acta (in the press), 1976.Google Scholar
  16. 16.
    R.V. Mustacich and B.R. Ware, Phys. Rev. Lett, 33, 617, 1974.ADSCrossRefGoogle Scholar
  17. 17.
    R.V. Mustacich and B.R. Ware, Biophys. J. 16, 373, 1976.CrossRefGoogle Scholar
  18. 18.
    D.B. Sattelle and P.B. Buchan, J. Cell Sci. (in the press) 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • D. B. Sattelle
    • 1
  • G. M. Langford
    • 1
    • 2
  • K. H. Langley
    • 1
    • 3
  1. 1.Dept. of ZoologyA.R.C. UnitCambridgeEngland
  2. 2.Depts. of Biology (Boston)University of MassachusettsUSA
  3. 3.Depts. of Physics (Amherst)University of MassachusettsUSA

Personalised recommendations