Essentials of probability theory and mathematical statistics

  • R. S. Liptser
  • A. N. Shiryayev
Part of the Applications of Mathematics book series (SMAP, volume 5)


According to Kolmogorov’s axiomatics the primary object of probability theory is the probability space (Ω, ℱ, P). Here (Ω, ) denotes measurable space, i.e., a set Ω consisting of elementary events ω, with a distinguished system of its subsets (events), forming a σ-algebra, and P denotes a probability measure (probability) defined on sets in .


Random Process Mathematical Statistic Nonnegative Random Variable Uniform Integrability Brownian Motion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. [86]
    Kolmogorov A. N., The Foundation of Probability Theory. ONTI, Moscow-Leningrad, 1936.Google Scholar
  2. [46]
    Doob J. L., Probability Processes. Russian transi., IL. Moscow, 1956.Google Scholar
  3. [117]
    Liptser R. S., Shiryayev A. N., On the densities of probability measures of diffusion type processes. Izv. AN SSSR, ser. matem. 33, 5 (1969), 1120–1131.Google Scholar
  4. Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis. “Nauka, Moscow, 1968.Google Scholar
  5. [123]
    McKean G., Stochastic Integrals. Russian transi., “MIR,” Moscow, 1972.Google Scholar
  6. [11]
    Blackwell D., Dubins L., Merging of opinions with increasing information. AMS 33 (1962), 882–886.MathSciNetMATHGoogle Scholar
  7. Fujisaki M., Kallianpur G., Kunita H., Stochastic differential equations for the nonlinear filtering problem. Russian transl.: Matematika. Sbornik perevodov inostr. statei, 17: 2 (1973), 108–128Google Scholar
  8. [136]
    Pugachev V. S., The Theory of Random Functions and its Application to Automatic Control Problems. Fizmatgiz, Moscow, 1962.Google Scholar
  9. [91]
    Cramer G., Lidbetter M., Stationary Random Processes. Russian transi., “MIR,” Moscow, 1969.Google Scholar
  10. [168]
    Shiryayev A. N., Studies in the statistical sequential analysis. Matem. zametki 3, 6 (1968), 739–754.Google Scholar
  11. [47]
    Dynkin Ye. B., Markov Processes. Fizmatgiz, Moscow, 1963.Google Scholar
  12. [12]
    Blumental R. M., Getoor R. K., Markov Processes and Potential Theory. Academic Press, N.Y., 1968.Google Scholar
  13. [132]
    Novikov A. A., On stopping times of a Wiener process. Teoria Verojatn. i Primenen. XVI, 3 (1971), 548–550.Google Scholar
  14. [165]
    Shiryayev A. N., On stochastic equations in the theory of conditional Markov processes. Teoria Verojatn. i Primenen. XI, 1 (1966), 200–206.Google Scholar
  15. [100]
    Levy P., Stochastic Processes and Brownian Motion. “Nauka, Moscow, 1972.Google Scholar
  16. [61]
    Ito K., McKean G., Diffusion processes and their trajectories. (Russian transi.), “MIR,” Moscow, 1968.Google Scholar
  17. [34]
    Gikhman 1. I., Skorokhod A. V., Introduction to Random Processes Theory. “Nauka,” Moscow, 1965.Google Scholar
  18. [36]
    Gikhman I. I., Skorokhod A. V., Stochastic Differential Equations. “Naukova dumka,” Kiev, 1968 (Ukranian).Google Scholar
  19. Letov A. M., Analytical design of regulators. I-IV. Avtomatika i telemekhanika 6 (1960), 661–665;Google Scholar
  20. [90]
    Cramer G., Mathematical Statistics Methods. Russian transi., IL, Moscow, 1948.Google Scholar
  21. [150]
    Turin G., Lectures on Digital Communication. Russian transi., “MIR,” Moscow, 1972.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. S. Liptser
    • 1
  • A. N. Shiryayev
    • 2
  1. 1.Institute for Problems of Control TheoryMoscowUSSR
  2. 2.Institute of Control SciencesMoscowUSSR

Personalised recommendations