Importance of Overlap in the Analysis of Weak Exchange Interactions by Perturbation Methods

  • R. Block
  • L. Jansen


The accurate determination of exchange interactions, i.e. those which arise as a consequence of permutation symmetry of the Hamiltonian for a system considered, is one of the most difficult tasks of the quantum theory of molecules and solids. On the other hand, the general importance of exchange interactions can hardly be overestimated: starting with Heitler and London’s (1927) pioneering work on the hydrogen molecule, it has become clear that they often play an essential role in problems of molecular stability and conformation, of the cohesive energy of insulators and metals, magnetic ordering in solids with paramagnetic cations; etc. Their accurate evaluation is, consequently, a conditio sine qua non for any satisfactory theoretical analysis of properties of condensed matter.


Exchange Interaction Direct Exchange Permutation Symmetry Weak Exchange Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. London, Z. Elektrochemie 35 (1929) 552; see also D.C. Mattis, The Theory of Magnetism, Harper and Row (New York, 1965) p.40 ff.Google Scholar
  2. 2.
    H. Margenau, Rev. Modern Phys. 11 (1939) 1.ADSMATHCrossRefGoogle Scholar
  3. 3.
    H.A. Kramers, Physica 1 (1934) 182.ADSMATHCrossRefGoogle Scholar
  4. 4.
    J. Becquerel, W.J. de Haas and J. van den Handel, Physica 1 (1934) 383.ADSCrossRefGoogle Scholar
  5. 5.
    D. de Klerk, Physica XII (1946) 513.ADSCrossRefGoogle Scholar
  6. 6.
    The origin of the name “superexchange” is somewhat obscure. Kramers, in his original article (3), calls the effect “indirect exchange”, but in a 1939-publication Réunion d’Etudes sur le Magnétisme (Strasbourg, 1939) 3, 45) speaks of (in French) “superéxchange”. Apparently, then, the name was invented during the period 1934–39.Google Scholar
  7. 7.
    C.G. Shull and J.S. Smart, Phys. Rev. 76 (1949) 1256.Google Scholar
  8. 8.
    P.W. Anderson, Phys. Rev. 79 (1950) 350.ADSMATHCrossRefGoogle Scholar
  9. 9.
    P.W. Anderson, Phys. Rev. 115 (1959) 2.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    P.W. Anderson, Phys. Rev. 124 (1961) 41.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    P.W. Anderson and A.M. Clogston, Bull.Am.Phys.Soc. 6 (1961) 124. 12.Google Scholar
  12. 11.
    J.B. Goodenough, Phys. Rev. 100 (1955) 564Google Scholar
  13. 11.
    J.B. Goodenough, J. Phys. Chem. Solids 6 (1958) 287.Google Scholar
  14. 13.
    J. Kanamori, J. Phys. Chem. Solids 10 (1959) 87.ADSCrossRefGoogle Scholar
  15. 14.
    P.W. Anderson, in Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press (New York, 1963 ) Vol. 14, p. 99.Google Scholar
  16. 15.
    For a review, see e.g. L. Jansen and E. Lombardi, Disc. Faraday Soc. 40 (1965) 78.CrossRefGoogle Scholar
  17. 16.
    P.-0. Löwdin, A Theoretical of Ionic Crystals, Almqvist Progr. Phys. 5 (1956) 1.Google Scholar
  18. 17.
    R. Ritter, L. Jansen and E. 2139; L. Jansen, R. Ritter 425.Google Scholar
  19. 18.
    L.J. de Jongh and R. Block, Physica 79B (1975) 568.Google Scholar
  20. 19.
    E. Lombardi, R. Ritter and L. Jansen, Int. J. Quantum Chem.7 (1973) 155;E. Lombardi, L. Pirola, G. Tarantini, L. Jansen and R. Ritter,ibid 8 (1974) 3 35.Google Scholar
  21. 20.
    E. Lombardi, G. Tarantini, L. Pirola, L. Jansen and R. Ritter,J.Chem.Phys. 61 (1974) 894.ADSCrossRefGoogle Scholar
  22. 21.
    L. Jansen, in Crystal Structure and Chemical Bonding in Inorganic Chemistry, edited by C.J.M. Rooymans and A. Rabenau, North-Holland Publ. Co (Amsterdam, 1975 ) p. 205.Google Scholar
  23. 22.
    K. Yosida, Phys. Rev. 106 (1957) 893;for a critical evaluation of applications see, e. g. H.J. Zeiger and G.W. Pratt, Magnetic Interactions in Solids, Clarendon Press (Oxford, 1973 ) Chapter 8; F. van der Woude and G.A. Sawatzky, Phys. Reports 12C (1974) 336, or K.H.J. Bus chow, J. Chem. Phys. 61 (19 74) 4666.Google Scholar
  24. 23.
    For a review, see e.g. A. edited by F. Seitz and D. 1969 ) Vol. 23, p. 283.Google Scholar
  25. 24.
    A. Witkowski, Mol. Phys.Google Scholar
  26. 25.
    L. Jansen, Phys. Rev. Phys. 162 (1967) 63;Google Scholar
  27. W. Byers Brown, Chem. Phys. Letters 2 (1968) 105.Google Scholar
  28. 26.
    See e.g. P. Kramer and T.H. Seligman, Nuclear Phys. A136 (1969) 545; A186Google Scholar
  29. 27.
    R. Block, Phys1972) 49ica 73 (1974) 312.Google Scholar
  30. 28.
    P.-0. Löwdin, Revs. Mod. Phys. 34 (1962) 80.Google Scholar
  31. 29.
    E. Lombardi, G. Tarantini, R. Block, R. Roël, G. ter Maten, L. Jansen and R. Ritter, Chem. Phys. Letters 12 (1972) 534.ADSCrossRefGoogle Scholar
  32. 30.
    J. Als-Nielsen, R.J. Birgenau and H.J. Guggenheim, Phys. Rev. B6 (1972) 2030.Google Scholar
  33. 31.
    M. Moshinsky and T.H. Seligman, Ann. Phys. 66 (1971) 311.MathSciNetADSMATHCrossRefGoogle Scholar
  34. 32.
    J.M. Norbeck and R. McWeeny, Chem. Phÿs. Letters 34 (1975) 206.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. Block
    • 1
  • L. Jansen
    • 1
  1. 1.Institute of Theoretical ChemistryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations