Advertisement

Biorthonormal Bases in Hilbert Space

  • Luc Lathouwers

Abstract

When Per-Olov Löwdin solved the non-othogonality problem, in his Ph.D. thesis1 in 1947, he did this through an ingenious combination of mathematical tools and physical intuition. Like orthonormalisation, biorthonormalisation is a problem of both mathematical and physical importance. Covariant and contravariant representations, direct and reciprocal lattices, secular equations for non-orthogonal basis sets are just a few topics intimately related to the concept of biorthonormal bases. The full solution of the biorthonormality problem, i.e., an existence theorem for biorthonormalisation, has, to our knowledge, not been given. It is the intention of the present article to fill this gap. or this purpose we will use a theorem of R. Paley and N. Wiener and the symmetric orthonormalisation 1, thus following Per-Olov Löwdin’s example in combining mathematics and physics to solve a problem of interest to both fields.

Keywords

Hilbert Space Schrodinger Equation Orthonormal System Secular Equation Finite Dimensional Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.O. Löwdin, “A Theoretical Investigation into some Properties of Ionic Crystals”, Thesis, Uppsala 1948, Almqvist and Wiksells.Google Scholar
  2. 2.
    R. Paley and N. Wiener, “Fourier Transforms in the Complex Domain”, Am. Math. Soc. (1934) 100.Google Scholar
  3. 3.
    P.O. Löwdin, “Advances in Quantum Chemistry V”, Academic Press (1970).Google Scholar
  4. 4.
    S. Banach, “Theorie des opérations linéaires”, Monografje Matematyczne (1932) 80 th. 5.Google Scholar
  5. 5.
    O. Toeplitz, Prace Math.-Fiz. 22 (1911) 113. E. Bellinger and 0. Toeplitz, Math. Ann. 69 (1910) 289.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    B. Sz.-Nagy, Duke Math. J. 14 (1947) 975.Google Scholar
  7. 7.
    I. Singer, “Bases in Banach Spaces I”, Springer (1970), this book contains an extensive bibliography on basis problems upto 1970.Google Scholar
  8. 8.
    J. von Neumann, “Mathematical Foundations of Quantum Mechanics”, Princeton U.P. (1955) 184.Google Scholar
  9. 9.
    E. Schmidt, Math. Ann. 63 (1907) 433.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J.C. Slater and G.F. Koster, Phys. Rev. 94 (1954) 1498.Google Scholar
  11. 11.
    P.O. Löwdin, Adv. Phys. 5 (1956) 1.ADSCrossRefGoogle Scholar
  12. 12.
    J. Nordling, J. Mol. Spectr. 13 (1964) 57.ADSCrossRefGoogle Scholar
  13. 13.
    L. Lathouwers, accepted for publ. in Intern. J. Quant. Chem.Google Scholar
  14. 14.
    B.C. Carlson and J.M. Keller, Phys. Rev. 105 (1957) 102.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    F. Riesz, Comptes Rendus 144 (1934) 34.Google Scholar
  16. 16.
    F. Riesz and B. Sz.-Nagy, “Functional Analysis” F. Unger Publ. Co., New York.Google Scholar
  17. 17.
    P.O. Löwdin, Phys. Rev. A139 (1965) 357.MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    L. Lathouwers, submitted for publ. in Intern. J. Quant. Chem.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Luc Lathouwers
    • 1
  1. 1.Dienst voor Teoretische en Wiskundige NatuurkundeRijksuniversitair Centrum AntwerpenAntwerpBelgium

Personalised recommendations