Advertisement

The Non-Orthogonality Problem and Orthogonalization Procedures

  • Giuseppe Del Re

Abstract

Historically, the non-orthogonality problem arose with the first attempts to pass from the qualitative quantum mechanical treatment of polyatomic molecules to more quantitative methods. Indeed, the very beginning of quantum chemistry was marked by the contradiction between considerations associating the strengths of the chemical bonds to the overlaps between atomic orbitals /1–4/ and treatments where the atomic orbitals were assumed to be orthogonal one to another /5/. The problem was at the same time a physical and a mathematical one, as will be illustrated below. Löwdin’s work (/6/ and references given later) played a decisive role in formulating correctly and analyzing this problem.

Keywords

Atomic Orbital Schrodinger Equation Hamiltonian Matrix Dependent Basis Orthogonalization Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Slater, Phys. Rev., 37, 481 (1931), 38, 325, 1109 (1932).ADSGoogle Scholar
  2. 2.
    R.S. Mulliken, Phys. Rev., 41, 67 (1932).ADSGoogle Scholar
  3. 3.
    L. Pauling, J. Amer. Chem. Soc., 53, 1367 (1931).CrossRefGoogle Scholar
  4. 4.
    R.S. Mulliken, J. Amer. Chem. Soc., /2, 4493 (1950).Google Scholar
  5. 5.
    G.W. Wheland, J. Amer. Chem. Soc., 63, 2025 (1941);CrossRefGoogle Scholar
  6. 5.
    B. H. Chirgwin and C.A. Coulson, Proc. Roy. Soc. (London), A201, 196 (1950).ADSMATHCrossRefGoogle Scholar
  7. 6.
    P.O. Löwdin, Adv. in Quant. Chem., 5, 185 (1970).ADSCrossRefGoogle Scholar
  8. 7.
    Cf. M.J.S. Dewar, J. Amer. Chem. Soc. /4, 3341–3357 (1952).Google Scholar
  9. 8.
    Cf.e.g. Th. Förster, in “Modern Quantum Cemistry”, 0. Sinanoglu ed. New York, Acad. Press, 1965, vol III, p. 93.Google Scholar
  10. 9.
    G. Del Re, Adv. Quant. Chem., 8, 95 (1974).CrossRefGoogle Scholar
  11. 10.
    C.A. Coulson, Revs. Mod. Phys., 32, 170 (1960).MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    G. Berthier, Tetrahedron, 19s. 2 1 (1963).CrossRefGoogle Scholar
  13. 12.
    G. Klopman, B.O. Leary, Fortschr. Chem. Forsch., 15, 445 (1970).CrossRefGoogle Scholar
  14. 13.
    J. Koutecky, Chem. Phys. Lett., 1, 249 (1967).ADSCrossRefGoogle Scholar
  15. 14.
    J. Hubbard, Proc. Roy. Soc. (London), A276, 238; A277, 237 (1964).ADSGoogle Scholar
  16. 15.
    P.O. Löwdin, Arkiv Mat. Astron. Fysik, 35A, n. 9 (1947);Google Scholar
  17. 15.
    P.O. Löwdin, J. Chem. Phys. 18, 365 (1950).ADSCrossRefGoogle Scholar
  18. 16.
    T.B. Grimley, J. Phys. C: Solid St. Phys., 3, 1934 (1970).ADSCrossRefGoogle Scholar
  19. 17.
    B.C. Carlson and J.M. Keller, Phys. Rev., 105, 102 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 18.
    G. Del Re, Theoret. Chim. Acta, 1, 188 (1963).CrossRefGoogle Scholar
  21. 19.
    P.O. Löwdin, Adv. in Phys. 5, 1, (1956) See in particular pp. 40–56.Google Scholar
  22. 20.
    R. McWeeny, in Molecular Orbitals in Chemistry Physics and Biology (Eds. P.O. Löwdin, B. Pullman) New York Acad. Press (1969).Google Scholar
  23. 21.
    A. Veillard, G. Del Re, Theoret. Chim. Acta, 2, 55 (1964).CrossRefGoogle Scholar
  24. 22.
    B.J. Duke, Theoret. Chim. Acta, 8, 87 (1967).CrossRefGoogle Scholar
  25. 23.
    J.A. Chapman, D.P. Chong, Theoret. Chim. Acta, 10, 364 (1968).CrossRefGoogle Scholar
  26. 24.
    P.O. Löwdin, J. Appl. Phys. (suppl.) 33, 251 (1962).ADSMATHCrossRefGoogle Scholar
  27. 25.
    G. Del Re, Int. J. Quant. Chem., 1, 293 (1967).ADSCrossRefGoogle Scholar
  28. 26.
    H. Shull and P.O. Löwdin, J. Chem. Phys., 23, 1362, 1565 (1955).ADSCrossRefGoogle Scholar
  29. 27.
    A. Rastelli and G. Del Re, Int. J. Quant. Chem., 3, 543 (1969).ADSCrossRefGoogle Scholar
  30. 28.
    R.S. Mulliken, J. Amer. Chem. Soc., 88, 1849 (1966).CrossRefGoogle Scholar
  31. 29.
    G. Del Re, Nuovo Cim. 13, 644 (1960).Google Scholar
  32. 30.
    K.Fukui, T. Youezawa, H. Shingu, J. Chem. Phys., 20, 722 (1952).ADSCrossRefGoogle Scholar
  33. 31.
    E. Goursat, Cours D’Analyses Mathématique Gauthiers-Villars, Paris 1949 (7ed.), col. 2 p. 65.Google Scholar
  34. 32.
    G. Del Re, Int. J. Quant. Chem., 7S, 193 (1973).CrossRefGoogle Scholar
  35. 33.
    H. Kashivagi, F. Sasaki, Int. J. Quant. Chem., 7S, 515 (1973).CrossRefGoogle Scholar
  36. 34.
    D.R. Hartree, Proc. Camb. Phys. Soc., 45, 230 (1949).Google Scholar
  37. 35.
    G. Berthier, Tetrahedron, 19, s. 2 1 (1963).CrossRefGoogle Scholar
  38. 36.
    G. Del Re, in Localization and Delocalization in Quantum Chemistry (eds. 0. Chalvet et al) Reidel, Dordrecht, 1976, Vol. II, p. 149–170.Google Scholar
  39. 37.
    B. Lévy, unpublished.Google Scholar
  40. 38.
    W. Mayer, J. Chem. Phys., 58, 1017 (1973).ADSCrossRefGoogle Scholar
  41. 39.
    C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35, 457 (1963).ADSMATHCrossRefGoogle Scholar
  42. 40.
    I. Fisher-Hjalmars, J. Chem. Phys. 42, 1962 (1965).ADSCrossRefGoogle Scholar
  43. 41.
    S.F. Boys and J. Foster, Rev. Mod. Phys. 32, 305 (1960).MathSciNetADSCrossRefGoogle Scholar
  44. 42.
    L.M. Fal, S. Wolfe and I.C. Csizmadia, J. Chem. Phys., 59, 4047 (1973).ADSCrossRefGoogle Scholar
  45. 43.
    J.P. Dahl, Acta Chem. Scand., 21, 1244 (1967).CrossRefGoogle Scholar
  46. 44.
    J. Cizek, J. Mol. Phys., 6, 19 (1963).ADSCrossRefGoogle Scholar
  47. 45.
    A. Julg, Fortsch. Chem. Forsch. (1975) in press and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Giuseppe Del Re
    • 1
  1. 1.Università di NapoliNapoliItaly

Personalised recommendations