Skip to main content

Energetics and Mechanism of 2-Aminopurine Induced Mutations

  • Chapter
Quantum Science

Abstract

Template specified base selection in nucleic acid synthesis underlies the expression of the genetic code. This comprises the storage replication and processing of information embedded in the chromosomal base sequences and is fundamental for the dynamics of the living state of matter. The fidelity of the gene copying is manifested in an error discrimination of the order of one error in 106−109 replicated bases /1/. What gives the fidelity to this selection specificity has intrigued physicists from the early days of genetics. To explain the stability of the genetic code, Delbruck /2/ and Schrödinger /3/ have considered the genome to be in a stationary quantum state. The discovery of the double helical structure of the DNA by Watson, Crick and Wilkins /4,5/ has provided the structural basis for a more explicit physical theory of the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drake J.W.; J. Mol. Biol., 6, 268–283 (1973).

    Article  Google Scholar 

  2. Delbruck M., Proc. Nat. Acad. Sci. U.S.; 40, 783 (1954).

    Article  Google Scholar 

  3. Schrödinger E., What is Life? The physical aspect of the living cell. (Cambridge University Press, 1945 ).

    Google Scholar 

  4. Watson D.J., Crick F.M., Nature 171, 737, 964 (1952).

    ADS  Google Scholar 

  5. Watson D.J., Crick F.M., Proc. Roy. Soc. (London), A233, 80 (1954).

    Google Scholar 

  6. Löwdin P., Biopolymers Symposia 1, 161–168 (1964).

    Google Scholar 

  7. Rein R., Coeckelenberg E., Egan T.J.; Int. J. Quantum Chem. (1976) In press.

    Google Scholar 

  8. Lee G.C.Y., Prestegard J.H., Chang I.S., J. Am Chem. Soc., 94 (3), 951 (1972).

    Article  Google Scholar 

  9. Ibid., J. Am. Chem. Soc., 94 (9), 3218 (1972).

    Article  Google Scholar 

  10. Bertran J., Chalvet 0., Daudel R., Anales de Fisica (Spain), Tomo LXVI, 247–257 (1970).

    Google Scholar 

  11. Watson D.J., Crick F.M., Cold Spring Harbor Symp. Quant. Biol. 18, 123–131 (1953).

    Article  Google Scholar 

  12. Rein R., Ladik J., J. Chem. Phy. 40, 2466 (1964).

    Article  ADS  Google Scholar 

  13. Rein R., Harris F.E., J. Chem. Phy. 41 (11), 3393 (1964).

    Article  ADS  Google Scholar 

  14. Rein R., Harris F.E., J. Chem. Phy. 42 (6), 2177 (1965).

    Article  ADS  Google Scholar 

  15. Rein R., Harris F.E., J. Chem. Phy. 43 (12), 4415 (1965).

    Article  ADS  Google Scholar 

  16. Rein R., Harris F.E., J. Chem. Phy. 45 (5), 1797 (1966).

    Article  ADS  Google Scholar 

  17. Pullman B., Pullman A., Biochim. Biophys. Acta 64, 703 (1962).

    Article  Google Scholar 

  18. Danilov et al., Biofizika 12 (4), 726–729 (1967).

    Google Scholar 

  19. McIver J.W., Komornick A., Chem. Phy. Lett. 10 (3), 303–306 (1971).

    Article  ADS  Google Scholar 

  20. Mazza F., Sobell H.M (1969).

    Google Scholar 

  21. Rein R., Clarke G.A. Quantum Chemistry & 1970 ) p. 86.

    Google Scholar 

  22. Egan J., Swissler T., Rein R., Int. J. Quantum Chem. Q.B. Symp. 1, 71–79 (1974).

    Google Scholar 

  23. Dewar M.J.S., Hasselback E., J. Am. Chem. Soc. 92 (3), 590–598 (1970).

    Article  Google Scholar 

  24. DeBusk G.A., Molecular Genetics (The MacMillan Co., 1968 ) P. 59.

    Google Scholar 

  25. Fresee E.B., Brookhaven Symp. Biol. 12, 63–73 (1959).

    Google Scholar 

  26. Rogan G.E., Bessman J.M.; J. Bacteriology 103 (3), 622–633 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rein, R., Garduno, R. (1976). Energetics and Mechanism of 2-Aminopurine Induced Mutations. In: Calais, JL., Goscinski, O., Linderberg, J., Öhrn, Y. (eds) Quantum Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1659-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1659-7_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1661-0

  • Online ISBN: 978-1-4757-1659-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics