Skip to main content

On Inversion Symmetry in Momentum Space

  • Chapter
Book cover Quantum Science

Abstract

The non-commutativity of postition and momenta is one of the fundamental differences between quantum and classical mechanics.As a consequence in quantum theory, it is customary to choose either the position space or the momentum space representation to describe the bound electronic states of atomic and molecular systems. The position space representation is by far the more commonly chosen one due not only to the simpler form of the Hamiltonian operator but also to the fact that it yields a charge density distribution which enables one intuitively to visualize the form of the system. However, the momentum space representation is equally valid although its picture is more difficult for the human mind to grasp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. McWeeny and C.A. Coulson, Proc. Phys. Soc. 62, 509 (1949).

    MathSciNet  MATH  Google Scholar 

  2. R. McWeeny, Proc. Phys. Soc. 62, 519 (1949).

    MathSciNet  MATH  Google Scholar 

  3. P.A.M. Dirac, Quantum Mechanics ( Oxford University Press, London, 1958 ) page 97.

    MATH  Google Scholar 

  4. P.-O. Löwdin, in Advances in Quantum Chemistry edited by P.O. Löwdin ( Academic Press, New York, 1967 ), vol. III, 323.

    Google Scholar 

  5. P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V.H. Smith, Jr. and J. Harriman, Report WIS-TCI-379, Theoretical Chemistry Institute of the University of Wisconsin (1970).

    Google Scholar 

  7. R. Benesch, S.R. Singh and V.H. Smith, Jr., Chem. Phys. Letters 10, 151 (1971).

    Article  ADS  Google Scholar 

  8. R. Benesch and V.H. Smith, Jr., Chem. Phys. Letters 5, 601 (1970).

    Article  ADS  Google Scholar 

  9. R. Benesch and V.H. Smith, Jr., Int. J. Quant. Chem. 4S, 131 (1971).

    Google Scholar 

  10. R. Benesch and V.H. Smith, Jr., in Wave Mechanics - the First Fifty Years edited by W.C. Price, S.S. Chissick and T. Ravensdale ( Butterworths, London, 1973 ).

    Google Scholar 

  11. P. Kaijser and P. Lindner, Phil. Mag. 31, 871 (1975).

    Article  ADS  Google Scholar 

  12. S.T. Epstein, Report WIS-TCI-431, Theoretical Chemistry Institute of the University of Wisconsin (1971).

    Google Scholar 

  13. A. Messiah, Quantum Mechanics (North Holland Publishing Company, Amsterdam, 1965 ) Vol. II, chapter XV.

    Google Scholar 

  14. M. Cooper, Adv. Phys. 20, 453 (1971).

    Article  ADS  Google Scholar 

  15. I.R. Epstein, in MTP International Review of Science (Butter-worths, London, 1975 ). Physical Chemistry Section, Theoretical Chemistry Volume, Second Series.

    Google Scholar 

  16. F.E. Harris and H.A. Pohl, J. Chem. Phys. 42, 3648 (1965).

    Article  ADS  Google Scholar 

  17. F.E. Harris, J. Chem. Phys. 43, S17 (1965).

    Google Scholar 

  18. C.F. Bunge, Phys. Rev. 154, 70 (1967).

    Article  ADS  Google Scholar 

  19. Mârtensson and Y. Ohrn, Theor. Chim. Acta 9, 133 (1967).

    Article  Google Scholar 

  20. C.A. Coulson and R.J. White, Mol. Phys. 18, 577 (1970).

    Article  ADS  Google Scholar 

  21. J. Felsteiner, R. Fox and S. Kahane, Phys. Rev. B6, 4689 (1972).

    Article  ADS  Google Scholar 

  22. J. Hendekovic, Int. J. Quantum Chem. 8, 799 (1974).

    Article  Google Scholar 

  23. P.-0. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).

    Google Scholar 

  24. P.-0. Löwdin, Acta. Vâlâ.dalensia, Part I, 17 (1958).

    Google Scholar 

  25. P.-O. Löwdin, Phys. Rev. 97, 1490 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Brändas, J. Mol. Spectroscopy 27, 236 (1968).

    Article  ADS  Google Scholar 

  27. L. Pauling, Proc. Nat. Acad. Sci. U.S. 14, 359 (1928).

    Google Scholar 

  28. L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931).

    Article  Google Scholar 

  29. J.C. Slater, Phys. Rev. 37, 481 (1931).

    Article  ADS  Google Scholar 

  30. C.A. Coulson, Proc. Roy. Soc. (Edinburgh) 61, 115 (1941).

    Google Scholar 

  31. C.A. Coulson, Valence ( University Press, Oxford, 1952 ).

    Google Scholar 

  32. P.-0. Löwdin, J. Chem. Phys. 21, 496 (1952).

    Google Scholar 

  33. E. Brändas and O. Mârtensson, Chem. Phys. Letters 3, 315 (1969).

    Article  ADS  Google Scholar 

  34. P. Lindner and O. Mârtensson, Acta. Chem. Scand. 23, 429 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaijser, P., Smith, V.H. (1976). On Inversion Symmetry in Momentum Space. In: Calais, JL., Goscinski, O., Linderberg, J., Öhrn, Y. (eds) Quantum Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1659-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1659-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1661-0

  • Online ISBN: 978-1-4757-1659-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics