Advertisement

On Resonant Potential Scattering

  • M. Berrondo
  • G. García-Calderón

Abstract

It is indeed with pleasure that we dedicate the present contribution to Professor Per Olov Löwdin in the sixtieth anniversary of his birth. From a glance at his bibliography, we could say that his interest in scattering theory has been dormant since his early days as a docent in Uppsala, time at which he lectured on the subject /1/, and led him to study Hulthén’s variational principle for the phase shifts /2/. Dormant however, does not mean inexistent: it is enough to recall the number of times he raises the question:“what about the continuum?” during seminars and conferences. In a paper with H. Shull /3/, they actually included the continuum spectrum in a configuration interaction calculation for the helium atom. This was achieved by means of a “discretization” of the continuum, with excellent results for the ground state of He.

Keywords

Green Function Imaginary Axis Helium Atom Short Range Potential Configuration Interaction Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.O. Löwdin, “Spridningsteori”, unpublished notes.Google Scholar
  2. 2.
    P.O. Löwdin & A. Sjölander, Ark. Fys. 3, 155 (1951).MathSciNetMATHGoogle Scholar
  3. 3.
    P.O. Löwdin & H. Shull, J. Chem. Phys. 23, 1362 (1955).ADSGoogle Scholar
  4. 4.
    P.O. Löwdin, to be published.Google Scholar
  5. 5.
    E.C. Titchmarsh, “Eigenfunction Expansions Associated with Second-Order Differential Equations”, Part I ( Oxford Univ.Press, 1946 ), Chaps. I & III.Google Scholar
  6. 6.
    See e.g. V. de Alfaro & T. Regge, “Potential Scattering”, (North-Holland Publ. Co., Amsterdam, 1965 ).Google Scholar
  7. 7.
    J.R. Taylor, “Scattering Theory”, (J. Wiley, New York, 1972 ).Google Scholar
  8. 8.
    H.M. Nussenzveig, “Causality and Dispersion Relations”, (Academic Press, New York, 1974). Chaps. 11–12.Google Scholar
  9. 9.
    G. Gamow, Z. Phys. 51, 204 (1928); A.J.F. Siegert, Phys. Rev. 56, 750 (1939); J. Humblet & L. Rosenfeld, Nucl. Phys. 26, 529 (1961).Google Scholar
  10. 10.
    N. Hokkyo, Prog.Theor.Phys. 33, 1116 (1965). For other normalization procedures, see also Y.B. Zel’dovich JETP 12, 542 (1961) and T. Berggren, Nucl. Phys. A109, 265 (1968).Google Scholar
  11. 11.
    R.E.Peierls & G. Garcia-Calderôn, to be published.Google Scholar
  12. 12.
    E.P. Wigner, Phys. Rev. 70, 15 (1946); L. Eisenbud & E.P. Wigner, ibid. 72, 29 (1947); A.M. Lane & R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958).MathSciNetCrossRefGoogle Scholar
  13. 13.
    P.L. Kapur & R.E. Peierls, Proc. Roy. Soc. A166, 277 (1938); R. E. Peierls, ibid. A253 16 (1959).Google Scholar
  14. 14.
    S.T. Ma, Phys. Rev. 69, 668 (1946).ADSCrossRefGoogle Scholar
  15. 15.
    H. Poincaré, Acta Math. 4. 213 (1884).CrossRefGoogle Scholar
  16. 16.
    J.M. Lozano & M. Moshinsky, Nuovo Cimento 20, 59 (1961).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    H. Weyl, Math. Ann. 68, 220 (1910).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    E. Brändas, M. Hehenberger & H.V. McIntosh, Int. J. Quantum Chem. IX, 103 (1975).Google Scholar
  19. 19.
    K. Dodaira, Am. J. Math. 72, 502 (1950).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • M. Berrondo
    • 1
    • 2
  • G. García-Calderón
    • 2
  1. 1.Instituto Mexicano del PetróleoMéxico
  2. 2.Instituto de FísicaUniversity of MéxicoMéxico 20, D.F.México

Personalised recommendations