Advertisement

Inelastic Scattering of Photons from Ionic Crystals and Effects of Overlap

  • K.-F. Berggren

Abstract

The Compton scattering experiment has recently been developed as a sensitive probe for electron wave functions in atoms, molecules and solids. The experimental technique in general and the basic theoretical assumptions are discussed. The Compton profile of ionic crystals is evaluated on the basis of a tight-binding (Heitler — London) model and Löwdin’s expansion in terms of overlap integrals. Comparison between experimental and theoretical results for LiF and LiH is made.

Keywords

Differential Cross Section Inelastic Scattering Momentum Distribution Compton Scattering Ionic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review, see M. Cooper, Advan. Phys. 20, 453 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    B. Williams (Editor), “The Compton Effect”, (McGraw-Hill, book to be published).Google Scholar
  3. 3.
    A.T. Stewart and L.O. Roelling (Editors), “Positron Annihilation”, (Academic Press, N.Y., 1967 ).Google Scholar
  4. 4.
    E. Weigold, S.T. Hood, and P.J.O. Teubner, Phys. Rev. Lett. 30, 475 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    I.E. McCarthy, A. Ugbabe, E. Weigold and P.J.0. Teubner, Phys. Rev. Lett. 33, 459 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    S. Dey, I.E. McCarthy, P.J.O. Teubner, and E. Weigold, Phys. Rev. Lett. 34, 782 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    P.O. Löwdin, “A Theoretical Investigation into Some Properties of Ionic Crystals” ( Almgvist & Wiksells, Uppsala, 1948 ).Google Scholar
  8. 8.
    The first part of Section III a is rather close to the presentation by J.J. Sakurai, “Advanced Quantum Mechanics”, (Addison-Wesley, 1967), Sec. 2–5.Google Scholar
  9. 9.
    W. Heitler, “The Quantum Theory of Radiation”, (Oxford University Press, 1954), 3rd edition, p. 192.Google Scholar
  10. 10.
    A.I. Achieser and W.B. Berestezki, “Quantenelektrodynamik”, (B.G. Teubner Verlagsgesellschaft, Leipzig 1962 ).Google Scholar
  11. 11.
    P. Eisenberger and W.A. Reed, Phys. Rev. B2, 3237 (1974).Google Scholar
  12. 12.
    S. Manninen, T. Paakkari, and K. Kajantie, Philos. Mag. 29, 167 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    R. Ribberfors, Phys. Rev. B, 12, 2067 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    R. Ribberfors, Phys. Rev. B, 12, 3136 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    An approach similar to the one in refs. 11–14 has been considered in connection with radiation transport theory (B.R. Wienke,,Nuclear Science and Engineering, 52, 247 (1973); J. Quant. Spectrosc. Radiat. Transfer, 15, 151 (1975)).Google Scholar
  16. 16.
    R. Ribberfors, “Relativistic differential cross sections for Compton scattering of photons from bound electron systems”, Report LiH-IFM-R-40 (Linköping University, Sept. 1975 ).Google Scholar
  17. 17.
    T. Paakkari, E.-L. Kohonen, O. Aikala, K. Mansikka, and S. Mikkola, Phys. Fenn. 9, 207 (1974).Google Scholar
  18. 18.
    P.O. Löwdin, Philos. Mag. Suppl. 1, 1 (1956).CrossRefGoogle Scholar
  19. 19.
    O. Aikala and K. Mansikka, Phys. Kondens. Materie, 11, 243 (1970); ibid. 14, 105 (1972).ADSGoogle Scholar
  20. 20.
    O. Aikala, V. Jokela, and K. Mansikka, J. Phys. C: Solid State Phys., 6, 1116 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    K.-F. Berggren, Solid State Commun., 9, 861 (1971).ADSCrossRefGoogle Scholar
  22. 22.
    S. Manninen, T. Paakkari, O. Aikala, and K. Mansikka, J. Phys. C: Solid State Phys., 6, L 410 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    O. Aikala, K. Mansikka, L. Ekström, and K.-F. Berggren, Philos. Mag., 28, 997 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    K. Mansikka and O. Aikala, Ann. Univ. Turkuensis AI, 162, 43 (1973).Google Scholar
  25. 25.
    W.A. Reed and P. Eisenberger, Phys. Rev. B, 6, 4596 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    W.A. Reed, P. Eisenberger, K.C. Pandey, and L.C. Snyder, Phys. Rev. B, 10, 1507 (1974).ADSCrossRefGoogle Scholar
  27. 27.
    R.J. Weiss, Philos. Mag., 21, 1169 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    W.A. Reed, P. Eisenberger, F. Martino, and K.-F. Berggren, Phys. Rev. Lett., 35, 114 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    K.-F. Berggren, F. Martino, P. Eisenberger, and W.A. Reed, Phys. Rev. B, Feb. (1976) (in press).Google Scholar
  30. 30.
    R.N. Euwema, G.G. Wepfer, G.T. Surratt, and D.L. Wilhite, Phys. Rev. B, 9, 5249 (1974).ADSCrossRefGoogle Scholar
  31. 31.
    E. Clementi, IBM J. Res. Dev., 9, 2 (1965).Google Scholar
  32. 32.
    A.B. Kunz, Phys. Rev. B, 2, 2224 (1970).ADSCrossRefGoogle Scholar
  33. 33.
    W.H. Zachariasen, Acta, Cryst. A24, 324 (1968).Google Scholar
  34. 34.
    R.C.G. Killean, J.L. Lawrence and V.C. Sharma, Acta. Cryst. A28, 405 (1972).Google Scholar
  35. 35.
    C.J. Howard and R.G. Khadake, Acta. Cryst. A30, 296 (1974).Google Scholar
  36. 36.
    C.J. Howard and B. Dawson, International Crystallography Conf., Melbourne, Australia, 1974.Google Scholar
  37. 37.
    W.H. Mueller, J.P. Blackledge, and G.G. Libowitz (Eds.), “Metal Hydrides” ( Academic Press, New York, 1968 ).Google Scholar
  38. 38.
    See e.g., T.R.P. Gibb in “Progress in Inorganic Chemistry”, Ed. F.A. Cotton (Interscience Publishers, Inc., New York, 1962), Vol. III, pp. 315–522.Google Scholar
  39. 39.
    E.A. Hylleraas, Z. Phys., 63, 771 (1930).ADSMATHCrossRefGoogle Scholar
  40. 40.
    S.O. Lundqvist, Arkiv for Fysik, 8, 177 (1954).MATHGoogle Scholar
  41. 41.
    A. Morita and K. Takahashi, Prog. Theor. Phys., 19, 257 (1958).ADSCrossRefGoogle Scholar
  42. 42.
    A.B. Kunz, phys. status solidi, 36, 301 (1969);CrossRefGoogle Scholar
  43. A.B. Kunz and D.J. Mickish, Phys. Rev. B, 11, 1700 (1975).ADSCrossRefGoogle Scholar
  44. 43.
    W. Brandt, L. Eder, and S.O. Lundquist, Phys. Rev., 142, 165 (1966).ADSCrossRefGoogle Scholar
  45. 44.
    K.-F. Berggren, J. Phys. C: Solid St. Phys., 2, 802 (1969).ADSCrossRefGoogle Scholar
  46. 45.
    W.C. Phillips and R.J. Weiss, Phys. Rev., 182, 923 (1969).ADSCrossRefGoogle Scholar
  47. 46.
    W. Brandt, Phys. Rev. B, 2 561 (1970).ADSCrossRefGoogle Scholar
  48. 47.
    K.-F. Berggren and F. Martino, Phys. Rev. B, 3, 1509 (1971).ADSCrossRefGoogle Scholar
  49. 48.
    J. Felsteiner, R. Fox, and S. Kahane, Phys. Rev. B, 6, 4689 (1972).ADSCrossRefGoogle Scholar
  50. 49.
    G. Grosso, G. Pastori Parravicini, and R. Resta, phys. stat. sol. (to be published).Google Scholar
  51. 50.
    T. Paakkari (private communication).Google Scholar
  52. 51.
    K.-F. Berggren, “Anisotropic Compton scattering in crystalline LiH”, Report LiH-IFM-IS-40 ( Linköping University, March 1975 ).Google Scholar
  53. 52.
    W.A. Reed and P. Eisenberger, Phys. Rev. B, 6, 4596 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • K.-F. Berggren
    • 1
  1. 1.Dept of Physics and Measurement TechnologyLinköping UniversityLinköpingSweden

Personalised recommendations