Theory and Application of Differential Polarized Phase Fluorometry

  • J. R. Lakowicz
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)


As discussed in the preceding contributions, polarized pulse fluorometry is widely used to investigate the rotational motions of fluorophores. Differential polarized phase fluorometry (DPF) provides comparable information. For differential phase measurements, a sinusoidally modulated exciting light is employed, and the difference in phase angle between the parallel and perpendicular components of the fluorescence emissions measured. These phase angles depend on the rates of fluorophore rotation and the isotropy and freedom of these rotations. Although polarized phase measurements date back to 1935, the theory and practice of DPF have only recently become available and been applied in biological research. These advances are primarily a result of the efforts of Weber.1,2 In the following sections, the theory of differential phase fluorometry, and the measurement of phase angles will be described. In addition, examples from the literature will be reviewed, and DPF compared with pulse methods.


Phase Angle Propylene Glycol Rotational Diffusion Pulse Method Exciting Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, G., Theory of differential phase fluorometry: Detection of anisotropic molecular rotations, J.Chem.Phys. 66 4081–4091 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    Weber, G., Limited rotational motion: Recognition by differential phase fluorometry, Acta Phys.Polon. A54 859–965 (1978)Google Scholar
  3. 3.
    Szymanowski, W., Einfluss der Rotation der Moleküle auf die Messungen der Abklingzeit der Fluoreszenzstrahlung, Z.Phys. 95 466–473 (1935)ADSCrossRefGoogle Scholar
  4. 4.
    Kessel, W., Uber der Einfluss der Molekülrotationen auf die Messungen der Fluoreszenzablingungszeit, Z.Phys. 103 125–132 (1936)ADSCrossRefGoogle Scholar
  5. 5.
    Galanin, M.D., Dokl.Akad.Nauk SSSR. 57 883–886 (1947)Google Scholar
  6. 6.
    Tumerman, L.A., Soviet Physics (Uspekhi), 33 218–276 (1947)Google Scholar
  7. 7.
    Galanin, M.D. Trudy Fiz.Inst.Lebedev, Akad.Nauk SSSR, 5 339–386 (1950)Google Scholar
  8. 8.
    Bauer, R.K., Polarization and Decay of Fluorescence of Solutions, Z. Naturforsch. 18a 718–724 (1963)ADSGoogle Scholar
  9. 9.
    Jablonski, A., Eine Theorie der zeitlichen Abklingung des Leuchtes bei polarisierter Fluoreszenz von Farbstofflösungen, Z. Physik. 95, 53–65 (1935)ADSCrossRefGoogle Scholar
  10. 10.
    Jablonski, A., Uber die Ablingungsvorgänge polarisierter Photolumineszenz., Z. Naturforsch. 16a 1–4 (1961)ADSGoogle Scholar
  11. 11.
    Kudryashov, P.I., Sveshnikov, B. Ya., and Shirokov, V.I., The kinetics of the concentration depolarization of luminescence and of the intermolecular transfer of excitation energy, Opt. Spectrosc. 9 177–181 (1960)ADSGoogle Scholar
  12. 12.
    Spencer, R.D. and Weber, G., Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime, J.Chem.Phys. 52 1654–1663 (1970)ADSGoogle Scholar
  13. 13.
    Lakowicz, J.R. and Prendergast, F.G., Detection of Hindered Rotations of 1, 6-Diphenyl-1, 3, 5-hexatriene in Lipid Bilayers by Differential Polarized Phase Fluorometry, Biophys.J. 24 213–231 (1978)Google Scholar
  14. 14.
    Lakowicz, J.R. and Prendergast, F.G., Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry, Science 200 1399–1401 (1978)Google Scholar
  15. 15.
    Zinsli, P.E., Anisotropic rotation and libration of perylene in paraffin, Chem.Phys. 20 299–309 (1977)Google Scholar
  16. 16.
    Mantulin, W.W. and Weber, G., Rotational anisotropy and solvent-fluorophore bonds. An investigation by differential polarized phase fluorometry, J.Chem.Phys. 66 4092–4099 (1977)ADSGoogle Scholar
  17. 17.
    Weber, G. and Mitchell, G.W., Demonstration of Anisotropic Molecular Rotations by Differential Polarized Phase Fluorometry, in, Excited States of Biological Molecules, J.B. Birks, ed., John Wiley and Sons, New York, 1976, pp. 72–76.Google Scholar
  18. 18.
    Valeur, B. and Weber, G., Anisotropic rotations in lnaphthylamine. Existence of a red-edge transition normal to the ring plane, Chem.Phys.Lett. 45 140–144 (1977)Google Scholar
  19. 19.
    Haar, H.P., Klein, U.K.A., Hafner, F.W. and Hauser, M., Determination of the rotational diffusion by a picosecond phase fluorometer, Chem.Phys.Lett. 49 563–567 (1977)Google Scholar
  20. 20.
    Heyn, M.P., Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108 359–364 (1979)Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. R. Lakowicz

There are no affiliations available

Personalised recommendations