Convolution Kinetics

  • M. Hauser
  • G. Wagenblast
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)

Abstract

In homogeneous reaction kinetics, an explicitly time-dependent rate coefficient occurred for the first time in von Smoluchowski’s famous treatment of diffusion controlled processes.1 Several classical authors2 adopted this theory for the bimolecular rate constant of fluorescence quenching in liquids:
(1)
The expression for the important quantity kSE:
$${k_{SE}} = 4 \times 10 - {3_{\pi \sigma ND}}\tilde - 8RT/3000\eta $$
where σ is the interaction radius and D(= RT/6πησN) the diffusion coefficient, can be simplified, under certain assumptions,3 to obtain the familiar formula containing only temperature T, solvent viscosity η and the gas constant R. The constant of the ‘square-root-of-time‘ term which describes the non-stationary part of diffusion is given by:
$$b = \sigma /\sqrt {\pi D} \tilde - 1{0^{ - 4}} - 1{0^{ - 5}}{s^{1/2}}$$
(2)
on inserting reasonable values for σ (ca. 5Å) and D (ca. 10−5cm2s−1) and is seen to be small enough to be neglected in many cases.

Keywords

Migration Cage Expense Paraffin Fluores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. von Smoluchowski, Physik.Z. 17 557, 583 (1916); Z.Phys. Chem. 92 129 (1917)Google Scholar
  2. 2.
    Th. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoeck and Ruprecht, Göttingen, 1951, p. 209.Google Scholar
  3. 3.
    J.B. Birks, Photophysics of Aromatic Molecules, John Wiley & Sons, New York, 1970, p. 509.Google Scholar
  4. 4.
    P. Debye, Trans.Electrochem.Soc. 82 265 (1942)Google Scholar
  5. 5.
    H.-P. Haar, U.K.A. Klein & M. Hauser, Chem.Phys.Lett 58 525 (1978)Google Scholar
  6. 6.
    E.W. Montroll, J.Chem.Phys. 14 202 (1946)Google Scholar
  7. 7.
    A. Weller, Z.Phys.Chem.N.F. 13 335 (1957)Google Scholar
  8. 8.
    Th. Förster, Ann.Phys.(Leipzig) 2 55 (1948)Google Scholar
  9. 9.
    Th. Förster, Z.Naturforsch. 4a 321 (1949)Google Scholar
  10. 10.
    I.B. Beriman, Energy transfer Parameters of Aromatic Compounds Academic Press, New York, 1973.Google Scholar
  11. 11.
    M.D. Cohen, A. Ludmer and Y. Yakhot, Chem.Phys.Lett. 38 398 (1976)Google Scholar
  12. 12.
    U. Gösele, M. Hauser and U.K.A. Klein, Z.Phys.Chem.N.F. 99 81 (1976)Google Scholar
  13. 13.
    M. Hauser, U.K.A. Klein and U. Gösele, Z.Phys.Chem.N.F: 101 255 (1976)Google Scholar
  14. 14.
    R.G. Bennett, J.Chem.Phys. 41 3037 (1964)Google Scholar
  15. 15.
    N. Mataga, H. Obashi and T. Okada, J.Phys.Chem. 73 370 (1969)Google Scholar
  16. 16.
    K.B. Eisenthal, Ber.Bunsenges.Phys.Chem. 78 1105 (1974)Google Scholar
  17. 17.
    U. Gösele, M. Hauser, U.K.A. Klein and R. Frey, Chem.Phys.Lett. 34 519 (1975) U.K.A. Klein, R. Frey, M. Hauser & U. Gösele, Chem.Phys.Lett. 41 41 (1976)Google Scholar
  18. 18.
    L.R. Faulkner, Chem.Phys.Lett. 43 552 (1976)Google Scholar
  19. 19.
    U.K.A. Klein, Ber.Bunsenges.Phys.Chem. 81 1103 (1977)Google Scholar
  20. 20.
    J.B. Birks, J.Phys.B. 2 946 (1968)Google Scholar
  21. 21.
    M. Hauser, R. Frey, U.K.A. Klein, U. Gösele, Acta Phys.Chem. Szeged 23 21 (1977)Google Scholar
  22. 22.
    G. Wagenblast and M. Hauser, IVth Conference on Luminescence Digest, Szeged (1982)Google Scholar
  23. 23.
    G. Porter, Naturwiss. 63 202 (1976)Google Scholar
  24. 24.
    G. Wagenblast, Doktorarbeit, Stuttgart, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • M. Hauser
  • G. Wagenblast

There are no affiliations available

Personalised recommendations