Skip to main content

Low Frequency Dynamics of Proteins Studied by Inelastic Neutron Scattering

  • Chapter

Part of the book series: Progress in Mathematics ((NSSA))

Abstract

In order to perform their biological function many proteins need to be able to adopt two or more different conformations and are induced to change from one to another by ligand or substrate binding or by a change in environmental conditions such as pH [1,2,3]. In several cases the nature of such conformational changes has been revealed by X-ray crystallography and shown to range from subtle reorientations of a few sidechains, to displacements of loops (e.g. phosphorylase, triose phosphate isomerase), pseudo-rigid body inter-domain motions (e.g. hexokinase, phosphoglycerate kinase [4]), subunit reorientations (heamoglobin, aspatate-transcarbamylase) and drastic rearrangements of the whole protein (e.g. influenza virus hemagglutinin). Conformational change or functional flexibility of this kind clearly involves internal protein motion. However there is overall direction to the motion and it is usually reversible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, A., Sci.Prog. Oxf. 66:473 (1980).

    Google Scholar 

  2. Huber,R. and Bennett,W.S. Bioploymers 22:261 (1983).

    Google Scholar 

  3. Ringe, D. and Petsko,G.A. Prog. Biophys. Mol. Biol. 45:197 (1985).

    Google Scholar 

  4. Watson,H. Elsewhere in these proceedings.

    Google Scholar 

  5. Cooper,A. Elsewhere in these proceedings.

    Google Scholar 

  6. McCammon, J.A. Rep. Prog.Phys. 47: 1 (1984).

    Article  Google Scholar 

  7. Karplus, M. in “Structural Molecular Biology” eds. Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).

    Google Scholar 

  8. McCammon,J.A. and Harvey,S.C. “Dynamics of proteins and nucleic acids.” Cambridge University Press, Cambridge.

    Google Scholar 

  9. Sturtevant,J.M. PNAS 74:2236 (1977).

    Google Scholar 

  10. Careri,G., Fasella,P. and Gratton,E. Ann.Rev.Biophys.Bioeng. 8: 69 (1979).

    Article  Google Scholar 

  11. Careri,G. Elsewhere in these proceedings.

    Google Scholar 

  12. Austin, R.H., Beeson,K.W., Eisenstein,L., Frauenfelder,H. and Gunsalus,I.C. Biochem. 14: 5355 (1975).

    Article  CAS  Google Scholar 

  13. Ansari,A., Berendson,J., Bowne,S.F., Frauenfelder,H., Iben,I.E.T., Shyamsunder,E. and Young,R.D. PNAS 82: 5000 (1985).

    Google Scholar 

  14. Middendorf, H.D. Ann.Rev.Biophys.Bioeng. 13: 425 (1984).

    Article  CAS  Google Scholar 

  15. Cusack,S. Comm.Mol.Cell.Biophys. 3:243 (1986).

    Google Scholar 

  16. Gratton,E. Elsewhere in these proceedings.

    Google Scholar 

  17. Parak,F. Elsewhere in these proceedings.

    Google Scholar 

  18. Springer,T. “Quasielastic neutron scattering diffusive motions in solids and liquids” 64, Springer-Verlag, Berlin (1972).

    Google Scholar 

  19. Lovesey, S.W. “Theory of neutron scattering from condensed matter.” Vol 1, Clarendon Press, Oxford (1984).

    Google Scholar 

  20. Bee,M. “Applications of quasielastic neutron scattering to chemistry, biology and material science.” Adam Hilger, London

    Google Scholar 

  21. Zaccai,G. and Jacrot,B. Ann.Rev.Biophys.Bioeng. 12:139 (1983).

    Google Scholar 

  22. Neutrons in Biology” ed. Schoenborn, B.P. Basic Life Sciences Vol 27. Plenum Press, New York (1984).

    Google Scholar 

  23. Neutron research facilities at the ILL Langevin, Grenoble, France.

    Google Scholar 

  24. Somorjai,R. Elsewhere in these proceedings.

    Google Scholar 

  25. Lifson,S. in “Structural Molecular Biology” eds. Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).

    Google Scholar 

  26. Levitt,M. J.Mol.Biol. 168:595 and 168:621 (1983).

    Google Scholar 

  27. Post,C.B., Brooks,B.R., Karplus,M., Dobson,C.M., Artymiuk,P.J., Cheetham,J.C. and Phillips,D.C. J.Mol.Biol. 190: 455 (1986).

    Article  Google Scholar 

  28. Levy,R.M., Sheridan,R.P., Keepers,J.W., Dubey,G.S., Swaminathan,S. and Karplus,M. Biophys.J. 48: 509 (1985).

    Article  Google Scholar 

  29. Smith,J., Kuczera,K., Tidor,B., Karplus,M., 156–157: 437 (1989).

    Google Scholar 

  30. Peticolas,W. in “Structural Molecular Biology” Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).

    Google Scholar 

  31. Suezaki,Y. and Go,N. Int.J.Pept.Prot.Res. 7:333 (1975).

    Google Scholar 

  32. Swaminathan,S., Ichiye,T., van Gunsteren,W. and Karplus,M. Biochem. 21: 5230 (1982).

    Article  Google Scholar 

  33. Fillaux,F. Elsewhere in these proceedings.

    Google Scholar 

  34. Levitt,M., Sander,C. and Stern,P.S. J.Mol.Biol. 181: 423 (1985).

    Google Scholar 

  35. Tidor,B., Irikura,K.K., Brooks,B.R. and Karplus,M. J.Biomol.Struc.Dyn. 1: 231 (1983).

    Article  Google Scholar 

  36. Levitt,M., Sander,C. and Stern,P.S. Int.J.Ouant.Chem. 10: 181 (1983).

    Google Scholar 

  37. Brooks,B.R. and Karplus,M. PNAS 80:6571 (1983).

    Google Scholar 

  38. Cusack,S., Smith,J., Finney,J., Tidor,B. and Karplus,M. J.Mol.Biol. 202: 903 (1988).

    Article  Google Scholar 

  39. Go,N., Noguti,T. and Nishikawa,T. PNAS 80: 3696 (1983).

    Google Scholar 

  40. Derreumeux,P. Thesis, University of Lille I I (1988).

    Google Scholar 

  41. Brooks,B.R., Bruccoleri,R.E., Olafson,B.D., States,D.J., Swaminathan,S. and Karplus,M. J.Comp.Chem. 4: 187 (1983).

    Article  Google Scholar 

  42. Smith,J., Cusack,S., Pezzeca,U., Brooks,B.R. and Karplus,M. J.Chem.Phys. 85:3636 (1986).

    Google Scholar 

  43. Cusack,S. and Doster,W. Submitted to J. Chem Phys.

    Google Scholar 

  44. Jacrot,B., Cusack,S., Dianoux,A.J. and Engelman,D.M. Nature 300: 84 (1982).

    Google Scholar 

  45. Bartunik,H.D., Jolles,P., Berthou,J. and Dianoux,A.J. Biopolymers 21: 43 (1982).

    Google Scholar 

  46. Cusack,S., Smith,J., Finney,J., Karplus,M. and Trewhella, J. Physica 136B: 256 (1986).

    Google Scholar 

  47. Doster,W., Cusack,S. and Petry,W. Nature 337: 754 (1989).

    Google Scholar 

  48. Drexel,W. and Peticolas,W.L. Bioploymers 14:715 (1975).

    Google Scholar 

  49. Mao,B., Pear,M.R., McCammon,J.A. and Northrup,S.H. Biopolymers 21: 1979 (1982).

    Article  Google Scholar 

  50. Dianoux,A.J., Page,J.N. and Rosenberg,H.M. Phys.Rev.Lett. 58: 886 (1987).

    Google Scholar 

  51. Elber,R. and Karplus,M. Phys.Rev.Lett. 56:394 (1986).

    Google Scholar 

  52. Parak,F., Knapp,E.W. and Kucheida,D. J.Mol.Biol. 161: 177 (1982).

    Google Scholar 

  53. Stöckli,H., Furrer,A., Schoenenberger,Ch., Meier,B.H., Ernst,R.R. and Anderson,I. Physica 136B: 161 (1986).

    Google Scholar 

  54. Doster,W., Bachleitner,A., Dunau,R., Hieb1,M. and Lüscher, E. Bioploymers 50: 213 (1986).

    Google Scholar 

  55. Frick,B., Richter,D., Petry,W. and Buchenau,U. Z.Phys. B70: 1 (1988).

    Article  Google Scholar 

  56. Fujara,F. and Petry,W. Eurphys.Lett. 4:921 (1987).

    Google Scholar 

  57. Elber,R. and Karplus,M. Science 235:318 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cusack, S. (1989). Low Frequency Dynamics of Proteins Studied by Inelastic Neutron Scattering. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics