Enzymes as Catalysts in Organic Synthesis

  • Stanley M. Roberts
Part of the Progress in Mathematics book series (NSSA)


The ability of the enzymes that are present in micro-organisms to catalyse chemical reactions has been known for thousands of years; indeed the fermentation of sugars into alcohol using yeast is described in the early scriptures.1


Enzyme Catalysed Reaction Aldol Reaction Tetrahedron Letter Rhizopus Arrhizus Horse Liver Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an interesting historical review see M.K. Turner in ‘The Chemical Industry’ (ed. C.A. Heaton), Blackie, Glasgow and London, 1986, p. 284.Google Scholar
  2. 2.
    For full reviews see J.B. Jones, Tetrahedron,1986, 42,3351 and references therein.Google Scholar
  3. 3.
    R.A. Johnson, ‘Oxygenations with Micro-organisms’ in ‘Oxidation in Organic Chemistry’ ed. W.S. Trahanovsky, Academic Press, New York, 1978, Volume C; W. Charney and H.L. Herzog, ‘Microbial Transformations of Steroids’, Academic Press, New York, 1967, p. 26.Google Scholar
  4. 4.
    S. Butt and S.M. Roberts, Nat. Prod. Reports, 1986, 3, 489.CrossRefGoogle Scholar
  5. 5.
    B. Wipf, E. Kupfer, R. Bertazzi, and H.G.W. Leuenberger, Hely. Chim. Acta, 1983, 66, 485; see also J. Ehrler, F. Giovannini, B. Lamatsch, and D. Seebach, Chimia, 1986, 40, 172.Google Scholar
  6. 6.
    K. Mori and H. Watanabe, Tetrahedron,1981, 37,1341; idem. ibid,1986, 42,295. Professor Mori has synthesized a wide range of natural products from optically active 3-hydroxyalkanoates.Google Scholar
  7. 7.
    D. Seebach and M. Eberle, Synthesis, 1986, 37.Google Scholar
  8. 8.
    C. Fuganti, P. Grasselli, P. Casati, and M. Carmeno, Tetrahedron Letters, 1985, 26, 101; W.-R. Shieh, A.S. Gopalan, and C.J. Sih, J. Am. Chem. Soc., 1985, 107, 2993.Google Scholar
  9. 9.
    C.J. Sih and C.-S. Chen, Ang. Chem. Int. Ed. Engl., 1984, 23, 570.CrossRefGoogle Scholar
  10. 10.
    P. De Shong, M.-T. Lin, and J.J. Ferez, Tetrahedron Letters, 1986, 27, 2091.Google Scholar
  11. 11.
    K. Nakamura, T. Miyai, K. Nozaki, K. Ushio, S. Oka, and A. Ohno, Tetrahedron Letters, 1986, 27, 3155.CrossRefGoogle Scholar
  12. 12.
    K. Nakamura, M. Higaki, K. Ushio, S. Oka, and A. Ohno, Tetrahedron Letters, 1985, 26, 4213.CrossRefGoogle Scholar
  13. 13.
    D. Seebach, M.F. Züger, F. Giovannini, B. Sonnleitner, and A. Fiechter, Angew. Chem. Int. Ed. Engl., 1984, 23, 151.CrossRefGoogle Scholar
  14. 14.
    D. Buisson and R. Azerad, Tetrahedron Letters, 1986, 27, 2631.Google Scholar
  15. 15.
    e.g. the Noyori Reagents, see R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi and S. Akutagawa, J. Am. Chem. Soc., 1987, 109, 5856.CrossRefGoogle Scholar
  16. 16.
    H. Suemune, N. Hayashi, K. Funakoshi, H. Akita, T. Oishi, and K. Sakai, Chem. Pharm. Bull., 1985, 33, 2168.Google Scholar
  17. 17.
    G. Guanti, L. Barfi, and E. Narisano, Tetrahedron Letters, 1986, 27, 3547; T. Fujisawa, E. Kojima, T. Itoh, and T. Sato, Chem. Letters, 1985, 1751; Y. Takaishi, Y.-L. Yang, D.D. Tullio, and C.J. Sih, Tetrahedron Letters, 1982, 23, 5489.Google Scholar
  18. 18.
    C.-Q. Han, D. Di Tullio, Y.-F. Wang, and C.J. Sih, J. Org. Chem., 1986, 51, 1253.CrossRefGoogle Scholar
  19. 19.
    M. Utaka, H. Watabu, and A. Takeda, Chem. Letters, 1985, 1475.Google Scholar
  20. 20.
    S. Tsuboi, E. Nishiyama, M. Utaka, and A. Takeda, Tetrahedron Letters, 1986, 27, 1915.CrossRefGoogle Scholar
  21. 21.
    T. Fujisawa, E. Kojima, T. Itoh, and T. Sato, Tetrahedron Letters, 1985, 26, 6089.CrossRefGoogle Scholar
  22. 22.
    D. Buisson, S. El Baba, and R. Azerad, Tetrahedron Letters, 1986, 27, 4453.CrossRefGoogle Scholar
  23. 23.
    W.M. Dai and W.-S. Zhou, Tetrahedron, 1985, 41, 4475; see also D.W. Brooks, H. Mazdiyarni, and P.G. Grothaus, J. Org. Chem., 1987, 52, 3223.Google Scholar
  24. 24.
    see, for example, C. Fuganti, P. Grasselli, P. Casati, and M. Carmeno, Tetrahedron Letters, 1985, 26, 101.CrossRefGoogle Scholar
  25. 25.
    R. Bowen and S.Y.R. Pugh, Chem. Ind. (London), 1985, 10, 323.Google Scholar
  26. 26.
    J. Leaver, T.C.C. Gartenmann, S.M. Roberts, and M.K. Turner in ‘Biocatalysis in Organic Media’ (eds. C. Laane, J. Tramper, and M.D. Lilley), Elsevier, Amsterdam, 1987, 411.Google Scholar
  27. 27.
    J.B. Jones in ‘Enzymes in Organic Synthesis’ (eds. R. Porter and S. Clark), Ciba Foundation Symposium 111, Pitman, 1985, p. 3.Google Scholar
  28. 28.
    E. Keinar, E.F. Hafeli, K.K. Seth and R. Laned, J. Am. Chem. Soc., 1986, -, 162; for an example of a reduction using growing T. brockii see A. Belan, J. Bolte, A. Fauve, J.G. Gourcy and H. Veschambre, J. Org. Chem., 1987, 52, 256.Google Scholar
  29. 29.
    S. Butt, H.G. Davies, M. J. Dawson, G.C. Lawrence, J. Leaver, S.M. Roberts, M.K. Turner, B.J. Wakefield, W.F. Wall, and J.A. Winders, Tetrahedron Letters, 1985, 26, 5077; S.M. Roberts, Chem. and Ind., 1988, 384.Google Scholar
  30. 30.
    L.G. Lee and G.M. Whitesides, J. Org. Chem., 1986, 51, 25.CrossRefGoogle Scholar
  31. 31.
    B. Rambeck and H. Simon, Angew. Chem. Int. Ed. Engl., 1974, 13, 609.CrossRefGoogle Scholar
  32. 32.
    H.G.W. Leuenberger, W. Boguth, E. Widner, and R. Zell, Hely. Chim. Acta, 1979, 62, 455; H. Simon, H. Gunther, J. Bader, and W. Tischer, Angew. Chem. Int. Ed. Engl., 1981, 20, 861; for a recent example of a bakers’ yeast reduction of an a,ß-unsaturated aldehyde see Tetrahedron Letters, 1988, 29, 2197.Google Scholar
  33. 33.
    M. Utaka, S. Konishi, and A. Takeda, Tetrahedron Letters, 1986, 27, 4737.CrossRefGoogle Scholar
  34. 34.
    P. Gramatica, P. Manitto, D. Monti, and G. Speranza, Tetrahedron, 1986, 42, 6687; see also P. Gramatica, G. Speranza, P. Manitto, and D. Monti, ibid, 1987, 43, 4481.Google Scholar
  35. 35.
    K.P. Lok, I.J. Jakovac, and J.B. Jones, J. Am. Chem. Soc., 1985, 107, 2521; see also G.L. Lemiére, J.A. Lepoivre and F.C. Alderweireldt, Tetrahedron Letters, 1985, 26, 4527; the difficulties in recycling NAD(P)+ have been discussed, L.G. Lee and G.M. Whitesides, ibid, 1985, 107, 6999.Google Scholar
  36. 36.
    Y. Khandelwal, N.J. de Souza, S. Chatterjee, B.N. Ganguli, and R.H. Rupp, Tetrahedron Letters, 1987, 28, 4089.CrossRefGoogle Scholar
  37. 37.
    J.-D. Fourneron, A. Archelas, B. Vigne, and R. Furstoss, Tetrahedron, 1987, 43, 2273; V. Lamare, J.D. Fourneron, R. Furstoss, C. Ehret, and B. Corbier, Tetrahedron Letters, 1987, 28, 6269.Google Scholar
  38. 38.
    Y. Yamazaki and H. Maeda, Tetrahedron Letters, 1985, 26, 4775.CrossRefGoogle Scholar
  39. 39.
    C.J. Francis and J.B. Jones, J. Chem. Soc., Chem. Commun., 1984, 579; L.K.P. Lau, R.A.H.F. Hui, and J.B. Jones, J. Org. Chem., 1986, 51, 2047.Google Scholar
  40. 40.
    F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, T. Norin, and P. Szmulik, Tetrahedron, 1985, 41, 1347; F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, and T. Norin, Tetrahedron Letters, 1985, 26, 4957.CrossRefGoogle Scholar
  41. 41.
    M. Kurihara, K. Kamiyama, S. Kobayashi, and M. Ohno, Tetrahedron Letters, 1985, 26, 5831.CrossRefGoogle Scholar
  42. 42.
    G. Sabbioni and J.B. Jones, J. Org. Chem., 1987, 52, 4565.CrossRefGoogle Scholar
  43. 43.
    H.-J. Gais and K.L. Lukas, Angew. Chem. Int. Ed. Engl., 1984, 23, 142.CrossRefGoogle Scholar
  44. 44.
    B.I. Glanzer, K. Faber, and H. Griengl, Tetrahedron, 1987, 43, 771.CrossRefGoogle Scholar
  45. 45.
    A.J.H. Klunder, F.J.C. van Gastel, and B. Zwanenburg, Tetrahedron Letters, 1988, 29, 2697.Google Scholar
  46. 46.
    H. Hemmerle and H.-J. Gais, Tetrahedron Letters, 1987, 28, 3471.CrossRefGoogle Scholar
  47. 47.
    B.I. Glanzer, K. Faber, and H. Griengl, Tetrahedron, 1987, 43, 5791.CrossRefGoogle Scholar
  48. 48.
    C. Chan, P.B. Cox, and S.M. Roberts, J. Chem. Soc., Chem. Corrunun.,1988Google Scholar
  49. 49.
    I.C. Cotterill, H. Finch, D.P. Reynolds, S.M. Roberts, H.S. Rzepa, K.M. Short, A.M.Z. Slawin, C.J. Wallis, and D.J. Williams, J. Chem. Soc., Chem. Commun., 1988, 470.Google Scholar
  50. 50.
    G. Eichberger, G. Penn, K. Faber, and H. Griengl, Tetrahedron Letters, 1986, 27, 2843.Google Scholar
  51. 51.
    D.R. Deardorff, A.J. Matthews, D.S. McMeekin, and C.L. Craney, Tetrahedron Letters, 1986, 27, 1255.CrossRefGoogle Scholar
  52. 52.
    In addition trifluoroethanol reacts selectively with various a,ß-unsaturated ketones and esters to give the y-hydroxyl carbonyl compounds, T. Kitazume and N. Ishikawa, Chem. Letters, 1984, 1815.Google Scholar
  53. 53.
    G. Kirchner, M.P. Scollar, and A.M. Klibanov, J. Am. Chem. Soc., 1985, 107, 7072.CrossRefGoogle Scholar
  54. 54.
    P.E. Sonnet, J. Org. Chem., 1987, 51, 3477.CrossRefGoogle Scholar
  55. 55.
    G.M. Ramos Tombo, H.-P. Schdr, X. Fernandex, and O. Ghisalba, Tetrahedron Letters, 1986, 27, 5707.CrossRefGoogle Scholar
  56. 56.
    T.A. Savage in ‘Biotechnology of Industrial Antibiotics’, ed. E.J. Vandamme, Marcel Dekker, New York, 1984, p. 171.Google Scholar
  57. 57.
    I. Chibata in ‘Asymmetric Reactions and Processes in Chemistry’ (eds. E.L. Eliel and S. Otsuka), Am. Chem. Soc., Washington, 1982; see also C. Wandrey in ‘Enzymes as Catalysts in Organic Synthesis’ (ed. M. Schneider), D. Reidel, Dordrecht, 1986, p. 263.Google Scholar
  58. 58.
    H. Yamada in ‘Enzyme Engineering’ (eds. I. Chibata, S. Fukui, and L.B. Wingard), Vol. 6, Plenum Press, New York, 1982, p. 97; T. Fukumura, Agric. Biot. Chem., 1976, 40, 1687, 1695; idem, ibid, 1977, 41, 1327.Google Scholar
  59. 59.
    C.F. Barbas III and C.-H. Wong, Tetrahedron Letters, 1988, 29, 2907; E.K. Bratovanova, I.B. Stoineva, and D.D. Petkov, Tetrahedron, 1988, 44, 3633; A. A. Ferjancic, A. Puigserver, and H. Gaertner, Biotech. Letters, 1988, 10, 101.Google Scholar
  60. 60.
    M.-J. de Smet, B. Witholt, and H. Wynberg, J. Org. Chem., 1981, 46, 3128; A.G. Katopodis, K. Wimalasena, J. Lee, and S.W. May, J. Am. Chem. Soc., 1984, 106, 7928.CrossRefGoogle Scholar
  61. 61.
    C.-H. Wong and G.M. Whitesides, J. Org. Chem., 1983, 48, 3199; J.R. Durrwachter, D.G. Drueckhammer, K. Nozaki, H.M. Swears, and C.-H. Wong, J. Am. Chem. Soc., 1986, 108, 7812.PubMedCrossRefGoogle Scholar
  62. 62.
    C. Fuganti, P. Grasselli, and S. Servi, J. Chem. Soc., Perkin Trans. I, 1983, 241; C. Fuganti, P. Grasselli, S. Servi, F. Spreafico, and C. Zirolfi, J. Org. Chem., 1984, 49, 4087.Google Scholar
  63. 63.
    E. Hochuli, Rely. Chim. Acta, 1983, 66, 489; L. Jaenicke and J. Preun, Eur. J. Biochem., 1984, 138, 319.Google Scholar
  64. 64.
    Y. Vo-Quang, D. Marais, L. Vo-Quang, F. Le Gaffic, A. Thiery, M. Maestracci, A. Arnaud, and P. Galzy, Tetrahedron Letters, 1987, 28, 4057.CrossRefGoogle Scholar
  65. 65.
    D.C. Crans and G.M. Whitesides, J. Am. Chem. Soc., 1985, 107, 7008, 7019.CrossRefGoogle Scholar
  66. 66.
    S. Shuto, S. Ueda, S. Imamura, K. Fukukawa, A. Matsuda, and T. Ueda, Tetrahedron Letters, 1987, 28, 199.CrossRefGoogle Scholar
  67. 67.
    H. Ohta, Y. Okamoto, and G. Tsuchihashi, Chem. Letters, 1984, 205; H.L. Holland, H. Popperl, R.W. Ninniss, and P.C. Chenchaiah, Can. J. Chem., 1985, 63, 1118.CrossRefGoogle Scholar
  68. 68.
    M.A. Findeis and G.M. Whitesides, J. Org. Chem., 1987, 52, 2838.Google Scholar
  69. 69.
    S.V. Ley, F. Sternfeld, and S.C. Taylor, Tetrahedron Letters, 1987, 28, 225.CrossRefGoogle Scholar
  70. 70.
    S.J.C. Taylor, D.W. Ribbons, A.M.Z. Slawin, D.A. Widdowson, and D.J. Williams, Tetrahedron Letters, 1987, 28, 6391.CrossRefGoogle Scholar
  71. 71.
    A.R. Clarke, C.J. Smith, K.W. Hart, H.W. Wilks, W.N. Chia, T.V. Lee, J.J. Birktoft, L.J. Banaszak, B.A. Barstow, T. Atkinson, and J.J. Holbrook, Biochem. Biophys. Res. Commun., 1987, 148, 15.PubMedCrossRefGoogle Scholar
  72. 72.
    A.D. Napper, S.J. Benkovic, A. Tramontano, and R.A. Lerner, Science, 1987, 237, 1041.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stanley M. Roberts
    • 1
  1. 1.Department of ChemistryUniversity of ExeterExeter, DevonEngland

Personalised recommendations