Skip to main content

Structure and Dynamics of Phospholipid Membranes from Nanoseconds to Seconds

  • Chapter

Part of the book series: Progress in Mathematics ((NSSA))

Abstract

The “Iodine-Laser Temperature Jump” (ILTJ) technique offers the unique possibility to measure dynamic processes in membrane systems as well as protein structures from nanoseconds to seconds, resulting in relaxation amplitudes which are correlated with the enthalpy changes of these often complicated systems. The new electron microscopic (EM) technique of fast freezing (< 10−4 s) of thin lamellar preparations and the use of a cryo EM allows the determination of structural details without the need of contrast chemicals. ILTJ measurements from 10−9 s –100 s are presented which cover the whole crystalline-fluid transition of unilamellar vesicles (UVs) from dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylcholine (DMPC). Especially tailored probe lipids like acridineorangelecithin (AOL) and diphenylhexatrienpalmitoylphosphatidylcholine (DPH PC) were used to confirm the turbidity measurements by time resolved absorption and fluorescence anisotropy changes. Five well separated relaxation signals of increasing cooperativity could be observed. By reconstructing the equilibrium data of the phase transition of membranes from the amplitudes of the kinetic relaxations it could be proved that the dynamic processes represent the whole crystalline-fluid transition. A model is presented which aims to explain the kinetic results on a molecular basis. UVs with incorporated cholesterol, gramicidin A and bacteriorhodopsin showed a strong shift of the slower relaxation amplitudes (100 μs – 20 ms) towards the 10 μs time range. We explain these results by the preference of intermediate states of order of the annular lipids in the surrounding of functional units like bacteriorhodopsin. We therefore call the relaxations τ3 around 10 μs functional important movements FIMs after Frauenfelder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Marsh, Electron Spin Resonance: Spin Labels, pp. 51–137 in: Membrane Spectroscopy, E. Grell ed., Springer Verlag Berlin

    Google Scholar 

  2. R. J. Smith and E. Oldfield, Science 225: 280 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. L. Brand, J. R. Knutson, L. Davenport, J. M. Beechem, R. E. Dale, D. G. Walbridge and A. A. Kowalczyik, Time Resolved Fluorescence Spectroscopy, pp. 259–305, in: Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale, eds., Academic Press, New York (1985).

    Google Scholar 

  4. F. Fillaux “Vibrational Spectroscopy”, in: The Enzyme Catalysis Process, A. Cooper and J. Houber, eds., Plenum Pub. Corp., New York (1989).

    Google Scholar 

  5. S. Cusack “Dynamic Neutron Scattering”, in: ibid.

    Google Scholar 

  6. W. Knoche, Pressure Jump Methods, pp. 187–210, in: Investigation of Rates and Mechanisms of Reactions Part II, G. G. Hammes, ed., A. Wiley Interscience Publ., New York (1974).

    Google Scholar 

  7. J. F. Holzwarth, W. Frisch and B. Gruenewald, Fast Dynamic Processes in the Hydrocarbon Tail Region of Phospholipid Bilayers, in: Microemulsion, I. D. Robb, ed., Plenum Publ. Corp., New York (1982).

    Google Scholar 

  8. a) J. F. Holzwarth, Laser Temperature Jump pp. 47–59, in: Techniques and Applications of Fast Reactions in Solution, W. J. Gettins and E. Wyn-Jones, eds., D. Reidel Pub. Comp., Dordrecht Holland (1979)

    Google Scholar 

  9. b) W. Frisch, A. Schmidt, R. Volk and J. F. Holzwarth, Laser T-Jump Arrangement with Time Resolution in the Second to Picosecond Range pp. 61–70, in: ibid (1979)

    Google Scholar 

  10. c) J. F. Holzwarth, A. Schmidt, H. Wolff and R. Volk, J. Phys. Chem. 81:2300 (1977)

    Google Scholar 

  11. d) see also ref. 19 and 20.

    Google Scholar 

  12. J. F. Holzwarth, V. Eck and A. Genz, Iodine Laser Temperature Jump: Relaxation Processes in Phospholipid Bilayers on the Picosecond to Millisecond Time Scale pp. 351–378, in: Spectroscopy and the Dynamics of Molecular Biological Systems, P. M. Bayley and R. E. Dale, eds., Academic Press, London (1985).

    Google Scholar 

  13. J. M. Kremer, M. W. Esker, C. Pathmamanocharan and C. Wiersema, Biochemistry 16: 2932 (1977).

    Article  Google Scholar 

  14. A. Genz and J. F. Holzwarth, Colloid+Polymer Sci. 263: 484 (1985).

    CAS  Google Scholar 

  15. V. Eck and J. F. Holzwarth, Fast Dynamic Phenomena in Vesicles of Phospholipids During Phase Transitions, pp. 2059–2079, in: Surfactants in Solution, Vol. 3, K. L. Mittal and B. Lindman, eds., Plenum Pub. Corp, New York (1984).

    Google Scholar 

  16. A. Genz and J. F. Holzwarth, Eur. Biophys. J. 13: 323 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. A. Genz, J. F. Holzwarth and T. Y. Tsong, Biophys. J. 50: 1043 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. M. P. Heyn and N. A. Dencher, Reconstruction of Monomeric Bacteriorhodopsin into Phospholipid Vesicles, pp. 31–35, in: Methods in Enzymology, Vol. 88, L. Packer, ed., Acad. Press, New York (1982).

    Google Scholar 

  19. a) G. H. Czerlinski and M. Eigen, Z. Elektrochemie 63:652 (1959)

    Google Scholar 

  20. C. F. Bernasconi, in: Relaxation Kinetics, C. F. Bernasoni, ed., Academic Press, New York (1976)

    Google Scholar 

  21. D. H. Turner, Temperature Jump Methods, pp. 141–189, in: Investigation of Rates and Mechanisms of Reactions Part II, C. F. Bernasoni, ed., John Wiley+Sons, New. York (1986).

    Google Scholar 

  22. A. Dawson, J. Gormally, E. Wyn-Jones and J. F. Holzwarth, J. C. S. Chem. Comm. 386 (1981).

    Google Scholar 

  23. B. Marcandalli, C. Winzek and J. F. Holzwarth, Ber. Bunsenges. Phys. Chem. 88:368 (1984)

    Google Scholar 

  24. B. Marcandalli, W. Knoche and J. F. Holzwarth, Gazetta Chimica Italiana 116:417 (1986)

    Google Scholar 

  25. c) see also ref. 22.

    Google Scholar 

  26. a) W. C. Natzle, C. B. Moore, D. M. Goodall, W. Frisch and J. F. Holzwarth, J. Phys. Chem. 85:2882 (1981)

    Google Scholar 

  27. D. M. Goodall, R. C. Greenhow, B. Knight, J. F. Holzwarth and W. Frisch, Single Photon Infrared Photochemistry: Wavelength and Temperature Dependence of the Quantum Yield for the Laser Induced Ionization of Water, pp. 561–568, in: Techniques and Applications of Fast Reactions in Solution, W. J. Gettins and E. Wyn-Jones, eds. D. Reidel Pub. Comp., Dordrecht Holland (1979).

    Google Scholar 

  28. J. J. Bannister, J. Gormally, J. F. Holzwarth and T. A. King, The Iodine Laser and Fast Reactions, pp. 227–233, in: Chemistry in Britain 20:227 (1984).

    Google Scholar 

  29. J. F. Holzwarth, Application of the Iodine Laser Temperature Jump in Biophysical Chemistry, pp. 94–125, in: Proceedings of the First International Workshop: Iodine Laser and Applications, B. Krâlikovâ and J. Krâsa, eds., Institute of Physics, Czechoslovac Academy of Sciences, 180:40 Prag 8 (1986).

    Google Scholar 

  30. J. F. Holzwarth, F. Meyer, M. Pickard and H. B. Dunford, Biochemistry 27: 6628 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. B. Marcandalli, G. Stange and J. F. Holzwarth, J. C. S. Faraday Trans. I, 84: 2807 (1988).

    Google Scholar 

  32. B. Gruenewald, W. Frisch and J. F. Holzwarth, Biochim. Biophys. Acta 641: 311 (1981).

    Article  CAS  Google Scholar 

  33. L. Cruzeiro-Hanson and 0. G. Mouritsen, Biochim. Biophys. Acta 944: 63 (1988).

    Article  Google Scholar 

  34. A. Genz, T. Tsong and J. F Holzwarth, Colloids and Surfaces, in preparation (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holzwarth, J.F. (1989). Structure and Dynamics of Phospholipid Membranes from Nanoseconds to Seconds. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics