Structure and Dynamics of Phospholipid Membranes from Nanoseconds to Seconds

  • Josef F. Holzwarth
Part of the Progress in Mathematics book series (NSSA)


The “Iodine-Laser Temperature Jump” (ILTJ) technique offers the unique possibility to measure dynamic processes in membrane systems as well as protein structures from nanoseconds to seconds, resulting in relaxation amplitudes which are correlated with the enthalpy changes of these often complicated systems. The new electron microscopic (EM) technique of fast freezing (< 10−4 s) of thin lamellar preparations and the use of a cryo EM allows the determination of structural details without the need of contrast chemicals. ILTJ measurements from 10−9 s –100 s are presented which cover the whole crystalline-fluid transition of unilamellar vesicles (UVs) from dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylcholine (DMPC). Especially tailored probe lipids like acridineorangelecithin (AOL) and diphenylhexatrienpalmitoylphosphatidylcholine (DPH PC) were used to confirm the turbidity measurements by time resolved absorption and fluorescence anisotropy changes. Five well separated relaxation signals of increasing cooperativity could be observed. By reconstructing the equilibrium data of the phase transition of membranes from the amplitudes of the kinetic relaxations it could be proved that the dynamic processes represent the whole crystalline-fluid transition. A model is presented which aims to explain the kinetic results on a molecular basis. UVs with incorporated cholesterol, gramicidin A and bacteriorhodopsin showed a strong shift of the slower relaxation amplitudes (100 μs – 20 ms) towards the 10 μs time range. We explain these results by the preference of intermediate states of order of the annular lipids in the surrounding of functional units like bacteriorhodopsin. We therefore call the relaxations τ3 around 10 μs functional important movements FIMs after Frauenfelder.


Differential Scanning Calorimetric Lateral Diffusion Fluorescence Anisotropy Relaxation Signal Vesicle Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Marsh, Electron Spin Resonance: Spin Labels, pp. 51–137 in: Membrane Spectroscopy, E. Grell ed., Springer Verlag BerlinGoogle Scholar
  2. 2.
    R. J. Smith and E. Oldfield, Science 225: 280 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Brand, J. R. Knutson, L. Davenport, J. M. Beechem, R. E. Dale, D. G. Walbridge and A. A. Kowalczyik, Time Resolved Fluorescence Spectroscopy, pp. 259–305, in: Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale, eds., Academic Press, New York (1985).Google Scholar
  4. 4.
    F. Fillaux “Vibrational Spectroscopy”, in: The Enzyme Catalysis Process, A. Cooper and J. Houber, eds., Plenum Pub. Corp., New York (1989).Google Scholar
  5. b).
    S. Cusack “Dynamic Neutron Scattering”, in: ibid.Google Scholar
  6. 5.
    W. Knoche, Pressure Jump Methods, pp. 187–210, in: Investigation of Rates and Mechanisms of Reactions Part II, G. G. Hammes, ed., A. Wiley Interscience Publ., New York (1974).Google Scholar
  7. 6.
    J. F. Holzwarth, W. Frisch and B. Gruenewald, Fast Dynamic Processes in the Hydrocarbon Tail Region of Phospholipid Bilayers, in: Microemulsion, I. D. Robb, ed., Plenum Publ. Corp., New York (1982).Google Scholar
  8. 7.
    a) J. F. Holzwarth, Laser Temperature Jump pp. 47–59, in: Techniques and Applications of Fast Reactions in Solution, W. J. Gettins and E. Wyn-Jones, eds., D. Reidel Pub. Comp., Dordrecht Holland (1979)Google Scholar
  9. b) W. Frisch, A. Schmidt, R. Volk and J. F. Holzwarth, Laser T-Jump Arrangement with Time Resolution in the Second to Picosecond Range pp. 61–70, in: ibid (1979)Google Scholar
  10. c) J. F. Holzwarth, A. Schmidt, H. Wolff and R. Volk, J. Phys. Chem. 81:2300 (1977)Google Scholar
  11. d) see also ref. 19 and 20.Google Scholar
  12. 8.
    J. F. Holzwarth, V. Eck and A. Genz, Iodine Laser Temperature Jump: Relaxation Processes in Phospholipid Bilayers on the Picosecond to Millisecond Time Scale pp. 351–378, in: Spectroscopy and the Dynamics of Molecular Biological Systems, P. M. Bayley and R. E. Dale, eds., Academic Press, London (1985).Google Scholar
  13. 9.
    J. M. Kremer, M. W. Esker, C. Pathmamanocharan and C. Wiersema, Biochemistry 16: 2932 (1977).CrossRefGoogle Scholar
  14. 10.
    A. Genz and J. F. Holzwarth, Colloid+Polymer Sci. 263: 484 (1985).Google Scholar
  15. 11.
    V. Eck and J. F. Holzwarth, Fast Dynamic Phenomena in Vesicles of Phospholipids During Phase Transitions, pp. 2059–2079, in: Surfactants in Solution, Vol. 3, K. L. Mittal and B. Lindman, eds., Plenum Pub. Corp, New York (1984).Google Scholar
  16. 12.
    A. Genz and J. F. Holzwarth, Eur. Biophys. J. 13: 323 (1986).PubMedCrossRefGoogle Scholar
  17. 13.
    A. Genz, J. F. Holzwarth and T. Y. Tsong, Biophys. J. 50: 1043 (1986).PubMedCrossRefGoogle Scholar
  18. 14.
    M. P. Heyn and N. A. Dencher, Reconstruction of Monomeric Bacteriorhodopsin into Phospholipid Vesicles, pp. 31–35, in: Methods in Enzymology, Vol. 88, L. Packer, ed., Acad. Press, New York (1982).Google Scholar
  19. 15.
    a) G. H. Czerlinski and M. Eigen, Z. Elektrochemie 63:652 (1959)Google Scholar
  20. b).
    C. F. Bernasconi, in: Relaxation Kinetics, C. F. Bernasoni, ed., Academic Press, New York (1976)Google Scholar
  21. c).
    D. H. Turner, Temperature Jump Methods, pp. 141–189, in: Investigation of Rates and Mechanisms of Reactions Part II, C. F. Bernasoni, ed., John Wiley+Sons, New. York (1986).Google Scholar
  22. 16.
    A. Dawson, J. Gormally, E. Wyn-Jones and J. F. Holzwarth, J. C. S. Chem. Comm. 386 (1981).Google Scholar
  23. 17.
    B. Marcandalli, C. Winzek and J. F. Holzwarth, Ber. Bunsenges. Phys. Chem. 88:368 (1984)Google Scholar
  24. b).
    B. Marcandalli, W. Knoche and J. F. Holzwarth, Gazetta Chimica Italiana 116:417 (1986)Google Scholar
  25. c) see also ref. 22.Google Scholar
  26. 18.
    a) W. C. Natzle, C. B. Moore, D. M. Goodall, W. Frisch and J. F. Holzwarth, J. Phys. Chem. 85:2882 (1981)Google Scholar
  27. b).
    D. M. Goodall, R. C. Greenhow, B. Knight, J. F. Holzwarth and W. Frisch, Single Photon Infrared Photochemistry: Wavelength and Temperature Dependence of the Quantum Yield for the Laser Induced Ionization of Water, pp. 561–568, in: Techniques and Applications of Fast Reactions in Solution, W. J. Gettins and E. Wyn-Jones, eds. D. Reidel Pub. Comp., Dordrecht Holland (1979).Google Scholar
  28. 19.
    J. J. Bannister, J. Gormally, J. F. Holzwarth and T. A. King, The Iodine Laser and Fast Reactions, pp. 227–233, in: Chemistry in Britain 20:227 (1984).Google Scholar
  29. 20.
    J. F. Holzwarth, Application of the Iodine Laser Temperature Jump in Biophysical Chemistry, pp. 94–125, in: Proceedings of the First International Workshop: Iodine Laser and Applications, B. Krâlikovâ and J. Krâsa, eds., Institute of Physics, Czechoslovac Academy of Sciences, 180:40 Prag 8 (1986).Google Scholar
  30. 21.
    J. F. Holzwarth, F. Meyer, M. Pickard and H. B. Dunford, Biochemistry 27: 6628 (1988).PubMedCrossRefGoogle Scholar
  31. 22.
    B. Marcandalli, G. Stange and J. F. Holzwarth, J. C. S. Faraday Trans. I, 84: 2807 (1988).Google Scholar
  32. 23.
    B. Gruenewald, W. Frisch and J. F. Holzwarth, Biochim. Biophys. Acta 641: 311 (1981).CrossRefGoogle Scholar
  33. 24.
    L. Cruzeiro-Hanson and 0. G. Mouritsen, Biochim. Biophys. Acta 944: 63 (1988).CrossRefGoogle Scholar
  34. 25.
    A. Genz, T. Tsong and J. F Holzwarth, Colloids and Surfaces, in preparation (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Josef F. Holzwarth
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin 33Germany

Personalised recommendations