Microcalorimetry of Protein-Ligand Interactions

  • Alan Cooper
Part of the Progress in Mathematics book series (NSSA)


The energetics of enzymic processes and the interactions responsible for protein behaviour have been central to our discussions so far. Several indirect methods are available for probing the thermodynamics of protein interactions, but the most unambiguous and direct experimental approaches are based on calorimetry. Most reactions have an associated heat effect and, apart from its intrinsic interest in terms of energetics, this heat can serve as a useful general probe of biomolecular processes. My purpose here is to describe the basis and applications of isothermal microcalorimetry to the study of interactions at protein binding sites, illustrating the range of information that may be obtained from such studies. But before doing this, we should perhaps consider the nature of the problem and why an empirical, rather than theoretical approach is necessary.


Transition State Analogue Calorimetric Enthalpy Isothermal Microcalorimetry Calorimetric Reaction Relative Statistical Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett,P.A. and Marlowe,C.K. (1987) Science, 235:569.PubMedCrossRefGoogle Scholar
  2. Beddell,C.R.,Moult,J. and Phillips,D.C.(1970) in “Ciba Foundation Symposium on Molecular Properties of Drug Receptors”, R.Porter and M.0’Connor, eds., Churchill, London, p.85.Google Scholar
  3. Biltonen,R.L. and Langerman,N. (1979) Meth.Enzymol., 61: 287.PubMedGoogle Scholar
  4. Bjurulf,C. and Wadsd,I. (1972) Eur.J.Biochem., 31: 95.CrossRefGoogle Scholar
  5. Blake,C.C.F., Johnson,L.N., Mair,G.A., North,A.C.T., Phillips,D.C. and Sarma,V.R. (1967) Proc.Roy.Soc.Ser.B, 167: 378.CrossRefGoogle Scholar
  6. Cooper,A. and Jenkins,F.M. (1973) in “Protides of the Biological Fluids”, H.Peeters,ed., Pergamon Press, Oxford, p. 457.Google Scholar
  7. Cooper,A. (1974) Biochemistry, 13: 2853.PubMedCrossRefGoogle Scholar
  8. Cooper,A. and Converse,C.A. (1976) Biochemistry, 15: 2970.PubMedCrossRefGoogle Scholar
  9. Cooper,A. (1979) Nature, 282: 531.PubMedCrossRefGoogle Scholar
  10. Cooper,A. (1981) FEBS Lett., 123: 324.PubMedCrossRefGoogle Scholar
  11. Cooper,A. (1982) Meth.Enzymol., 88: 667.Google Scholar
  12. Cooper,A.,Dixon,S.F. and Tsuda,M. (1986) Eur.Biophys.J., 13: 195.PubMedCrossRefGoogle Scholar
  13. Cooper,A.,Dixon,S.F.,Nutley,M.A. and Robb,J.L. (1987) J.Am.Chem.Soc. 109: 7254.CrossRefGoogle Scholar
  14. Dahlquist,F.W. and Raftery,M.A. (1968) Biochemistry, 7: 3269.PubMedCrossRefGoogle Scholar
  15. Fersht,A. et al.,(1984) Nature, 314:235.Google Scholar
  16. Hu,C.Q. and Sturtevant,J.M. (1987) Biochemistry, 26: 178.PubMedCrossRefGoogle Scholar
  17. Kauzmann,W. (1959) Adv.Protein Chem., 14: 1.PubMedGoogle Scholar
  18. Langerman,N. and Biltonen,R.L. (1979) Meth.Enzymol., 61: 261.PubMedGoogle Scholar
  19. Sturtevant,J.M. (1962) in “Experimental Thermochemistry”, Vo1.II, H.A.Skinner,ed., Interscience, New York, p. 427.Google Scholar
  20. Sturtevant,J.M. (1974) Annu.Rev.Biophys.BioenQ.,3:35. Sturtevant,J.M.(1977) Proc.Nat.Acad.Sci., 74: 2236.CrossRefGoogle Scholar
  21. Sturtevant,J.M. (1987) Annu.Rev.Phys.Chem., 38:463. Wadso,I.(1974) Pure Appl.Chem., 38: 529.Google Scholar
  22. Wadso,I. (1983) Pure Appl.Chem., 55: 515.CrossRefGoogle Scholar
  23. Wolfenden,R. (1970) Biochemistry, 9: 3404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Alan Cooper
    • 1
  1. 1.Department of ChemistryGlasgow UniversityGlasgowScotland, UK

Personalised recommendations