Acid-Base Strength and Molecular Structure

  • R. P. Bell


Many detailed discussions have been published on the effects of substituents on the strengths of organic acids and bases.1 We have seen that caution is necessary in interpreting small differences in dissociation constants in terms of molecular models, and this chapter will deal only with a few of the more striking effects, with special reference to some which are of interest in reaction kinetics. We shall consider first the strengths of hydrides and oxyacids of different elements.


Dissociation Constant Triplet State Strong Acid Acid Strength Excited Singlet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For recent articles see, C. K. Ingold, Structure and Mechanism in Organic Chemistry, Bell, London, 1969, Ch. xiv; H. C. Brown, D. H. McDaniel, and O. Häfliger, article in The Determination of Organic Structures by Physical Methods (ed. E. A. Braude and F. C. Nachod), Academic Press, New York, 1955; G. W. Wheland, The Theory of Resonance in Organic Chemistry, Wiley, New York, 1955, Ch. vii.Google Scholar
  2. 2.
    G. Schwarzenbach, Z. Phys. Chem.,176A, 133 (1936). He gives pK(CH4) = 34, but employed an incorrect value for pK(NH3).Google Scholar
  3. 3.
    L. V. Coulter, J. R. Sinclair, A. G. Cole, and G. C. Roper, J. Am. Chem. Soc., 81, 2986 (1959).CrossRefGoogle Scholar
  4. 4.
    H. D. Mulder and F. C. Schmidt, J. Am. Chem. Soc., 73, 5575 (1951); W. L. Jolly, Chem. Rev., 50, 351 (1951); W. M. Latimer and W. L. Jolly, J. Am. Chem. Soc., 75, 4147 (1953).Google Scholar
  5. 5.
    M. Renaud, Canad. J. Chem., 47, 4702 (1969). These measurements were carried out with very dilute solutions, 10–5–10–4M, so that corrections for junction potentials, activity coefficients, and incomplete dissociation are minimized. They are to be preferred to the earlier results of V. A. Pleskov and A. M. Monoszon, Acta Physicochim. U.R.S.S., 1, 725 (1935).Google Scholar
  6. 6.
    R. E. Weston and J. Bigeleisen, J. Am. Chem. Soc., 76, 3074 (1955).CrossRefGoogle Scholar
  7. 7.
    P. R. Patel, E. C. Moreno, and J. M. Patel, J. Res. Nat. Bur. Stand., 75, 205 (1971).CrossRefGoogle Scholar
  8. 8.
    W. F. K. Wynne-Jones, J. Chem. Soc., 1064 (1930).Google Scholar
  9. 9.
    R. A. Robinson, Trans. Faraday Soc., 32, 743 (1936); R. A. Robinson and R. G. Bates, Analyt. Chem., 43, 969 (1971).Google Scholar
  10. 10.
    L. Ebert, Naturwiss., 13, 393 (1925).CrossRefGoogle Scholar
  11. 11.
    S. J. Bates and H. D. Kirschman, J. Am. Chem. Soc., 41, 1991 (1919).CrossRefGoogle Scholar
  12. 12.
    See Chapter 4 for references.Google Scholar
  13. 13.
    A. Hantzsch, Z. Phys. Chem., 134, 406 (1928); R. P. Bell and R. le G. Burnett, Trans. Faraday Soc., 35, 324 (1939); P. B. D. de la Mare and P. W. Robertson, J. Chem. Soc., 888 (1948).Google Scholar
  14. 14.
    J. I. Braumann, J. R. Eyler, L. K. Blair, M. J. White, M. B. Comisarow, and K. C. Smyth, J. Am. Chem. Soc., 93, 6360 (1971).CrossRefGoogle Scholar
  15. 15.
    The numerical values are taken from a critical survey by Braumann et al. 4Google Scholar
  16. 16.
    J. C. McCoubrey, Trans. Faraday Soc.,51, 743 (1955). In Table 9 some of McCoubrey’s figures have been replaced by more recent ones.Google Scholar
  17. 17.
    A. Kossiakoff and D. Harker, J. Am. Chem. Soc., 60, 2047 (1938); L. Pauling, General Chemisty, Freeman, San Francisco, 1947, p. 394; J. E. Ricci, J. Am. Chem. Soc., 70, 109 (1948); R. J. Gillespie, J. Chem. Soc., 2537 (1950).Google Scholar
  18. 18.
    J. O. Edwards, G. C. Morrison, V. F. Ross, and J. W. Schulz, J. Am. Chem. Soc., 77, 266 (1955); R. P. Bell, J. O. Edwards, and R. B. Jones, in The Chemistry of Boron and its Compounds (ed. E. L. Muetterties ), Wiley, New York, 1966, pp. 209–221.Google Scholar
  19. 19.
    N. Bjerrum, Z. Phys. Chem., 106, 219 (1923).Google Scholar
  20. 20.
    J. G. Kirkwood and F. H. Westheimer, J. Chem. Phys., 6, 506 (1938); J. Am. Chem. Soc., 61, 555 (1939); F. H. Westheimer and J. G. Kirkwood, J. Chem. Phys., 6, 513 (1938).Google Scholar
  21. 21.
    R. Gane and C. K. Ingold, J. Chem. Soc., 2153 (1931).Google Scholar
  22. 22.
    R. P. Bell and G. A. Wright, Trans. Faraday Soc., 57, 1377 (1961).CrossRefGoogle Scholar
  23. 23.
    P. Rumpf, Bull. Soc. Chim. France, 871 (1938).Google Scholar
  24. 24.
    R. P. Bell and B. A. W. Coller, Trans. Faraday Soc.,60, 1087 (1964). This paper corrects an earlier suggestion (Bell and Wright) that a moment of 3.7 D accords best with structure (31)(ii).Google Scholar
  25. 25.
    R. P. Bell and D. A. Rawlinson, J. Chem. Soc., 4387 (1958).Google Scholar
  26. 26.
    R. P. Bell and G. A. Wright, Trans. Faraday Soc., 57, 1386 (1961).CrossRefGoogle Scholar
  27. 27.
    R. P. Bell, G. R. Hillier, J. W. Mansfield, and D. G. Street, J. Chem. Soc., B, 827 (1967).Google Scholar
  28. 28.
    C. K. Ingold, Ref. 1, p. 279.Google Scholar
  29. 29.
    Unpublished observations by Dr. D. J. Barnes.Google Scholar
  30. 30.
    H. J. Backer and W. van Dam, Rec. Tray. Chim., 49, 482 (1930).CrossRefGoogle Scholar
  31. 31.
    See, e.g., Westheimer and Kirkwood C. Tanford, J. Am. Chem. Soc., 79, 5340 (1957); C. Tanford and J. G. Kirkwood, J. Am. Chem. Soc., 79, 5333 (1957).Google Scholar
  32. 32.
    R. Stewart and M. M. Mocek, Canad. J. Chem., 41, 1161 (1963); W. J. Middleton and R. V. Lindsey, J. Am. Chem. Soc., 86, 4948 (1964).Google Scholar
  33. 33.
    J. Hine, R. C. Peck, and B. D. Oakes, J. Am. Chem. Soc., 76, 827 (1954); J. Hine and N. W. Burske, J. Am. Chem. Soc., 78, 3337 (1956); J. Hine, N. W. Burske, M. Hine, and P. B. Langford, J. Am. Chem. Soc., 79, 1406 (1957).Google Scholar
  34. 34.
    W. K. McEwen, J. Am. Chem. Soc., 58, 1124 (1936).CrossRefGoogle Scholar
  35. 35.
    A. Streitwieser, J. I. Braumann, J. H. Hammons, and A. H. Pudjaatmaka, J. Am. Chem. Soc., 87, 384 (1965); A. Streitwieser, E. Ciuffarin, and J. H. Hammons, J. Am. Chem. Soc., 89, 63 (1967).Google Scholar
  36. 36.
    E. C. Steiner and J. M. Gilbert, J. Am. Chem. Soc., 87, 382 (1965); C. D. Ritchie and R. E. Uschold, J. Am. Chem. Soc., 89, 1721, 2752, 2960 (1967).Google Scholar
  37. 37.
    R. Kuhn and D. Rewicki, Annalen,706, 250 (1967), and eight earlier papers.Google Scholar
  38. 38.
    R. E. Dessy, Y. Okuzumi, and A. Chen, J. Am. Chem. Soc., 84, 2899 (1962).CrossRefGoogle Scholar
  39. 39.
    R. P. Bell, Trans. Faraday Soc., 39, 253 (1943).CrossRefGoogle Scholar
  40. 40.
    G. J. Heiszwolf and H. Kloosterziel, Rec. Tray. Chim., 86, 807 (1967).CrossRefGoogle Scholar
  41. 41.
    See, e.g., D. J. Cram, R. D. Trepka, and P. St. Janiak, J. Am. Chem. Soc.,88, 2749 (1966); M. J. Gresser, Quart. Rep. Sulphur Chem.,Suppl. 4, p. 29 (1969); B. S. Thyagarajan, ibid.,p. 115.Google Scholar
  42. 42.
    S. Wolfe, A. Rauk, and I. G. Czmidia, J. Am. Chem. Soc., 91, 1567 (1969).CrossRefGoogle Scholar
  43. 43.
    A. Weller, Progr. Reaction Kinetics, 1, 187 (1961).Google Scholar
  44. 44.
    B. L. van Duuren, Chem. Rev., 63, 325 (1963).CrossRefGoogle Scholar
  45. 45.
    E. Vander Donckt, Progr. Reaction Kinetics, 5, 273 (1970).Google Scholar
  46. 46.
    T. Förster, Z. Elektrochem., 54, 42 (1950).Google Scholar
  47. 47.
    G. Jackson and G. Porter, Proc. Roy. Soc., A, 260, 13 (1961).CrossRefGoogle Scholar
  48. 48.
    For a critique, see N. Amal, M. Deumié, and P. Viallet, J. Chico. Phys., 66, 421 (1969).Google Scholar
  49. 49.
    See, e.g., J. Bertran, O. Chalvet, and R. Daudel, Theor. Chico. Acta, 14, 1 (1969).CrossRefGoogle Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations