Skip to main content

Kinetic Isotope Effects in Proton-Transfer Reactions

  • Chapter

Abstract

Kinetic isotope effects in general have now become an everyday tool of the mechanistic organic chemist, and this is particularly true of hydrogen isotope effects, partly because hydrogen is involved in so many reactions, and partly because such effects are much larger for hydrogen than for the isotopes of heavier atoms. It is interesting to note that the rate differences between hydrogen and deuterium compounds are sometimes so large that the use of deuterium compounds has been proposed as a practical expedient for slowing down harmful reactions, e.g., the deterioration of lubricants by oxidation.1 Since the publication of the first edition of this book a number of books and review articles have appeared on the general subject of kinetic isotope effects.2–5 The present chapter will therefore be confined almost entirely to isotope effects in proton-transfer reactions, though some reference will be made to the closely allied problem of reactions involving the transfer of hydrogen atoms, especially in connection with the tunnel effect. On the other hand, no reference will be made to the increasing use of secondary hydrogen isotope effects for obtaining information about neighbouring group participation, especially in solvolytic reactions,6 since these do not normally involve proton transfers. Even in the field of proton-transfer reactions only a selection of the available material has been covered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Krumbiegel, Z. Chem., 8, 328 (1968).

    Article  Google Scholar 

  2. L. Melander, Isotope Effects on Reaction Rates, Ronald Press, New York, 1960.

    Google Scholar 

  3. Isotope Mass Effects in Chemistry and Biology,Butterworths, London, 1964; also in Pure Appl. Chem.,8, Nos. 3 and 4 (1964).

    Google Scholar 

  4. W. H. Sanders, Survey Progr. Chem., 3, 109 (1966).

    Google Scholar 

  5. Isotope Effects in Chemical Reactions (ed. C. J. Collins and N. S. Bowman), Van Nostrand Reinhold, New York, 1970.

    Google Scholar 

  6. For recent reviews of this subject, see the articles and by V. J. Shiner and by D. E. Sunko S. Borcic in Ref. 5.

    Google Scholar 

  7. G. L. Coté and H. W. Thompson, Proc. Roy. Soc., A, 210, 206 (1951).

    Article  Google Scholar 

  8. R. P. Bell, Trans. Faraday Soc., 66, 2770 (1970).

    Article  Google Scholar 

  9. J. Bigeleisen, J. Chem. Phys., 17, 675 (1949).

    Article  Google Scholar 

  10. C. G. Swain, E. C. Stivers, J. F. Reuwer, and L. J. Schaad, J. Am. Chem. Soc., 80, 5885 (1958).

    Article  Google Scholar 

  11. J Bigeleisen, Tritium in the Physical and Biological Sciences,I.A.E.H. Vienna, 1, 161 (1962).

    Google Scholar 

  12. J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta, 19, 117 (1963).

    Article  Google Scholar 

  13. M. Wolfsberg and M. J. Stern, Pure Appl. Chem., 8, 225, 325 (1964).

    Article  Google Scholar 

  14. M. J. Stern and M. Wolfsberg, J. Chem. Phys., 39, 2776 (1963); 45, 2618, 4105 (1966); J. Pharm. Sci., 54, 849 (1965).

    Google Scholar 

  15. M. J. Stern, M. E. Schneider, and P. C. Vogel, J. Chem. Phys., 55, 4286 (1971).

    Article  Google Scholar 

  16. P C. Vogel and M. J. Stern, J. Chem. Phys., 54, 779 (1971).

    Article  Google Scholar 

  17. M. J. Stern and P. C. Vogel, J. Am. Chem. Soc., 93, 4664 (1971).

    Article  Google Scholar 

  18. M. E. Schneider and M. J. Stern, J. Am. Chem. Soc., 94, 1517 (1972).

    Article  Google Scholar 

  19. M. J. Stern, W. Spindel, and E. V. Monse, J. Chem. Phys., 48, 2908 (1968).

    Article  Google Scholar 

  20. E. V. Monse, W. Spindel, and M. J. Stern, Adv. Chem. Ser., 89, 148 (1969).

    Article  Google Scholar 

  21. T. T. S. Huang, W. J. Kass, W. E. Buddenbaum, and P. E. Yankwich, J. Phys. Chem., 72, 4431 (1968).

    Article  Google Scholar 

  22. W. D. Emmons and M. F. Hawthorne, J. Am. Chem. Soc., 78, 5593 (1956).

    Article  Google Scholar 

  23. M. H. Davies, to be published (1972).

    Google Scholar 

  24. A. Streitwieser and D. E. van Sickle, J. Am. Chem. Soc., 84, 254 (1962).

    Article  Google Scholar 

  25. R. P. Bell and D. M. Goodall, Proc. Roy. Soc., A, 294, 273 (1966).

    Article  Google Scholar 

  26. M. Christen and H. Zollinger, Heir. Chim Acta, 45, 2057 (1962).

    Article  Google Scholar 

  27. E. Grovenstein and N. S. Aprahamian, J. Am. Chem. Soc., 84, 212 (1962).

    Article  Google Scholar 

  28. B. T. Baliga and A. N. Boums, Canad. J. Chem., 44, 379 (1966).

    Article  Google Scholar 

  29. H. Zollinger, Adv. Phys. Org. Chem., 2, 163 (1964).

    Article  Google Scholar 

  30. E. S. Lewis and L. H. Funderburk, J. Am. Chem. Soc., 89, 2322 (1967); E. S. Lewis and J. K. Robinson, J. Am. Chem. Soc., 90, 4337 (1968).

    Google Scholar 

  31. R. P. Bell and J. E. Crooks, Proc. Roy. Soc., A, 286, 285 (1965).

    Google Scholar 

  32. D. J. Barnes and R. P. Bell, Proc. Roy. Soc., A, 318, 421 (1970).

    Article  Google Scholar 

  33. R. P. Bell and B. G. Cox, J. Chem. Soc., B, 194 (1970).

    Google Scholar 

  34. R. P. Bell and B. G. Cox, J. Chem. Soc., B, 783 (1971).

    Google Scholar 

  35. R. P. Bell and D. M. Goodall, Proc. Roy. Soc., A, 294, 273 (1966).

    Article  Google Scholar 

  36. R. P. Bell, W. H. Sachs, and R. L. Tranter, Trans. Faraday Soc., 67, 1995 (1971).

    Article  Google Scholar 

  37. R. P. Bell, Disc. Faraday Soc., 39, 16 (1966).

    Article  Google Scholar 

  38. F. H. Westheimer, Chem. Rev., 61, 265 (1961).

    Article  Google Scholar 

  39. J. Bigeleisen, Pure Appi. Chem., 8, 217 (1964).

    Article  Google Scholar 

  40. A V. Willi and M. Wolfsberg, Chem. and Ind., 2097 (1964).

    Google Scholar 

  41. W J. Albery, Trans. Faraday Soc., 63, 200 (1967).

    Article  Google Scholar 

  42. R. A. More O’Ferrall and J. Kouba, J. Chem. Soc., B, 985 (1967).

    Google Scholar 

  43. R. A. More O’Ferrall, J. Chem. Soc., B, 785 (1970).

    Google Scholar 

  44. W. A. Pryor and K. G. Kneipp, J. Am. Chem. Soc., 93, 5584 (1971).

    Article  Google Scholar 

  45. A. V. Willi, Hely. Chim. Acta, 54, 1220 (1971).

    Article  Google Scholar 

  46. C. D. Ritchie and H. F. King, J. Am. Chem. Soc., 90, 825, 833, 838 (1968).

    Article  Google Scholar 

  47. R. P. Bell, Trans. Faraday Soc., 57, 961 (1961).

    Article  Google Scholar 

  48. J. R. Platt, J. Chem. Phys., 18, 932 (1950); H. C. Longuet-Higgins and D. A. Brown, J. Inorg. Nucl. Chem., 1, 60 (1955); L. Salem, J. Chem. Phys., 38, 1227 (1963).

    Google Scholar 

  49. R. F. W. Bader, Canad. J. Chem., 42, 1822 (1964).

    Article  Google Scholar 

  50. R. P. Bell, W. H. Sachs, and R. L. Tranter, Trans. Faraday Soc., 67, 1995 (1971).

    Article  Google Scholar 

  51. R. H. Fowler and L. Nordheim, Proc. Roy. Soc., A, 119, 173 (1928); L. Nordheim, Proc. Roy. Soc., A, 121, 626 (1928).

    Google Scholar 

  52. See, e.g., G. Gamow, Structure of Atomic Nuclei and Nuclear Transformations,Oxford, 1937, Ch. 5.

    Google Scholar 

  53. J. Weiss, Proc. Roy. Soc., A, 222, 128 (1954); R. J. Marcus, B. J. Zwolinski, and H. Eyring, J. Phys. Chem., 58, 432 (1954).

    Google Scholar 

  54. F. Hund., Z. Physik., 43, 805 (1927); D. G. Bourgin, Proc. Nat. Acad. Sci., 15, 357 (1929); R. M. Langer, Phys. Rev., 34, 92 (1929); S. Roginsky and L. Rosenkewitsch, Z. Phys. Chem., B, 10, 47 (1930); E. Wigner, Z. Phys. Chem., B, 19, 203 (1932); R. P. Bell, Proc. Roy. Soc., A, 139, 466 (1933); C. E. H. Bawn and G. Ogden, Trans. Faraday Soc., 30, 434 (1934).

    Google Scholar 

  55. H. S. Johnston, Adv. Chem. Phys., 3, 131 (1961).

    Article  Google Scholar 

  56. E. F. Caldin, Chem. Rev., 69, 135 (1969).

    Article  Google Scholar 

  57. M. D. Harmony, Chem. Soc. Rev., 1, 211 (1972).

    Article  Google Scholar 

  58. S. G. Christov, Ann. Univ. Sofia Fac. Phys. Math., 42, 69 (1945–1946); C. R. Acad. Bulg. Sci., 1, 43 (1948); Z. Elektrochem., 62, 567 (1958); 64, 840 (1960); Dokl. Akad. Nauk SSSR, 125, 141 (1959); 136, 663 (1960); Z. Physik. Chem. (Leipzig), 212, 40 (1959); 214, 40 (1960); Ber. Bunsengesell. Phys. Chem., 67, 117 (1963); 76, 507 (1972); Electrochim. Acta, 4, 194, 306 (1961); 9, 575 (1963); Ann. Phys., 12, 20 (1963); 15, 87 (1965); Disc. Faraday Soc., 39, 60, 254, 263 (1965); J. Res. Inst. Catalysis, Hokkaido Univ., 16, 169 (1968); Croat. Chem. Acta, 44, 67 (1972).

    Google Scholar 

  59. R. P. Bell, Trans. Faraday Soc., 55, 1 (1959). In this paper expression (171) was regarded as an approximate one, since it was based on the Brillouin—WentzelKramers (B.W.K.) approximate solution of the wave equation. However, in this particular case the result is exact [E. C. Kemble, Fundamental Principles of Quantum Mechanics,McGraw-Hill, New York, 1937, Ch. 3; D. L. Hill and J. A. Wheeler, Phys. Rev.,89, 1140 (1953)].

    Google Scholar 

  60. I. Bigeleisen, Proceedings of International Symposium on Isotope Separation, Amsterdam, 1958, p. 148.

    Google Scholar 

  61. C. Eckart, Phys. Rev., 35, 1303 (1930).

    Article  Google Scholar 

  62. H. S. Johnston and D. Rapp, J. Am. Chem. Soc., 83, 1 (1961).

    Article  Google Scholar 

  63. T. E. Sharp and H. S. Johnston, J. Chem. Phys., 37, 1541 (1962).

    Article  Google Scholar 

  64. H. S. Johnston and J. Heicklen, J. Phys. Chem., 66, 532 (1962).

    Article  Google Scholar 

  65. H. Shin, J. Chem. Phys., 39, 2934 (1963).

    Article  Google Scholar 

  66. R. J. Le Roy, K. A. Quickert, and D. J. Le Roy, Trans. Faraday Soc., 66, 2997 (1970).

    Article  Google Scholar 

  67. E. M. Mortensen and K. S. Pitzer, Chem. Soc. Special Publ. No. 16, 57 (1962).

    Google Scholar 

  68. E. M. Mortensen, J. Chem. Phys., 48, 4029 (1968); 49, 3526 (1968).

    Google Scholar 

  69. D. G. Truhlar and A. Kuppermann, J. Chem. Phys., 52, 3841 (1970); Chem. Phys. Letters, 9, 269 (1971).

    Google Scholar 

  70. J. R. Hulett, Chem. Soc. Quart. Rev., 18, 227 (1964).

    Article  Google Scholar 

  71. E. F. Caldin and E. Harbron, J. Chem. Soc., 3454 (1962).

    Google Scholar 

  72. E. F. Caldin and M. Kasparian, Disc. Faraday Soc., 39, 25 (1965).

    Article  Google Scholar 

  73. E. F. Caldin, M. Kasparian, and G. Tomalin, Trans. Faraday Soc., 64, 2823 (1968).

    Article  Google Scholar 

  74. R. P. Bell, J. A. Fendley, and J. R. Hulett, Proc. Roy. Soc., A, 235, 453 (1956).

    Article  Google Scholar 

  75. J. R. Jones, Trans. Faraday Soc., 65, 2430 (1969).

    Article  Google Scholar 

  76. V. J. Shiner and M. L. Smith, J. Am. Chem. Soc., 83, 593 (1961).

    Article  Google Scholar 

  77. V. J. Shiner and B. Martin, Pure Appl. Chem., 8, 371 (1964).

    Article  Google Scholar 

  78. J. R. Jones, R. E. Marks, and S. C. Subba Rao, Trans. Faraday Soc., 63, 993 (1967).

    Article  Google Scholar 

  79. E. F. Caldin and G. Tomalin, Trans. Faraday Soc., 64, 2814, 2823 (1968).

    Article  Google Scholar 

  80. R. P. Bell, Proc. Roy..Soc., A, 148, 241 (1935).

    Article  Google Scholar 

  81. J. J. Weiss, J. Chem. Phys., 41, 1120 (1964).

    Article  Google Scholar 

  82. J. R. Jones, Trans. Faraday Soc., 65, 2138 (1969).

    Article  Google Scholar 

  83. R. Stewart and R. van der Linden, Disc. Faraday Soc., 29, 211 (1960).

    Article  Google Scholar 

  84. R. Stewart and D. G. Lee, Canad. J. Chem., 42, 439 (1964).

    Article  Google Scholar 

  85. R. Stewart and M. M. Mocek, Canad. J. Chem., 41, 1161 (1963).

    Google Scholar 

  86. E. S. Lewis, J. M. Perry, and R. H. Grinstein, J. Am. Chem. Soc., 92, 899 (1970).

    Google Scholar 

  87. P. Krumbiegel, Z. Chem., 8, 328 (1968).

    Article  Google Scholar 

  88. S. Rummel and H. Huebner, Z. Chem., 9, 150 (1969).

    Article  Google Scholar 

  89. C. Lifshitz and G. Stein, J. Chem. Soc., 3706 (1962).

    Google Scholar 

  90. M. Simonyi and F. Tiidos, Adv. Phys. Org. Chem., 9, 127 (1970).

    Article  Google Scholar 

  91. L. N. Shishkina and I. V. Berezin, Zh. Fiz. Khim., 39, 2547 (1965); Russ. J. Phys. Chem., 39, 1357 (1965).

    Google Scholar 

  92. V. L. Antonovskii and I. V. Berezin, Zh. Fiz. Khim., 34, 1286 (1960).

    Google Scholar 

  93. A. Bromberg, K. A. Muszkat, and E. Fischer, Chem. Comm., 1352 (1968).

    Google Scholar 

  94. A. Bromberg and K. A. Muszkat, J. Am. Chem. Soc., 91, 2860 (1969).

    Article  Google Scholar 

  95. A. Warshel and A. Bromberg J. Chem. Phys., 52, 1262 (1970).

    Article  Google Scholar 

  96. A. Bromberg, K. A. Muszkat, and A. Warshel, J. Chem. Phys., 52, 5952 (1970).

    Article  Google Scholar 

  97. A. Bromberg, K. A. Muszkat, E. Fischer, and F. S. Klein, J. Chem. Soc., Perk. Trans. II, 588 (1972).

    Google Scholar 

  98. Unpublished calculations by R. L. Tranter, and by M. J. Stern.

    Google Scholar 

  99. E. D. Sprague and F. Williams, J. Am. Chem. Soc., 93, 787 (1971).

    Article  Google Scholar 

  100. R. J. Le Roy, E. D. Sprague, and F. Williams, J. Phys. Chem., 76, 546 (1972).

    Article  Google Scholar 

  101. M. H. J. Wijnen, J. Chem. Phys., 22, 1074 (1954).

    Article  Google Scholar 

  102. C. A. Parr and D. G. Truhlar, J. Phys. Chem., 75, 1844 (1971).

    Article  Google Scholar 

  103. W. R. Schulz and D. J. Le Roy, Canad. J. Chem., 42, 2480 (1964); J. Chem. Phys., 42, 3869 (1965).

    Google Scholar 

  104. B. A. Ridley, W. R. Schulz, and D. J. Le Roy, J. Chem. Phys., 44, 3344 (1966).

    Article  Google Scholar 

  105. D. J. Le Roy, B. A. Ridley, and K. A. Quickert, Disc. Faraday Soc., 44, 97 (1967).

    Article  Google Scholar 

  106. A. A. Westenburg and N. de Haas, J. Chem. Phys., 47, 1393 (1967).

    Article  Google Scholar 

  107. I. Shavitt, J. Chem. Phys., 49, 4048 (1968).

    Article  Google Scholar 

  108. K. A. Quickert and D. J. Le Roy, J. Chem. Phys., 53, 1325 (1970).

    Article  Google Scholar 

  109. J. Bigeleisen, F. S. Klein, R. E. Weston, and M. Wolfsberg, J. Chem. Phys., 30, 1340 (1959).

    Article  Google Scholar 

  110. A. Persky and F. S. Klein, J. Chem. Phys., 44, 3617 (1966).

    Article  Google Scholar 

  111. T. E. Sharp and H. S. Johnston, J. Chem. Phys., 37, 1541 (1962).

    Article  Google Scholar 

  112. H. S. Johnston and E. Tschuikow-Roux, J. Chem. Phys., 36, 463 (1962).

    Article  Google Scholar 

  113. H. S. Johnston, Adv. Chem. Phys., 3, 131 (1961).

    Article  Google Scholar 

  114. J. S. Shapiro and R. E. Weston, J. Phys. Chem., 76, 1669 (1972).

    Article  Google Scholar 

  115. C. L. Kibby and R. E. Weston, J. Chem. Phys., 49, 1193 (1968).

    Article  Google Scholar 

  116. For a review, see P. M. Laughton and R. E. Robertson in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York, 1969.

    Google Scholar 

  117. For references, and a review of other mechanistic evidence, see E. H. Cordes, Progr. Phys. Org. Chem., 4, 1 (1967).

    Google Scholar 

  118. J. G. Pritchard and F. A. Long, J. Am. Chem. Soc., 78, 6008 (1956).

    Article  Google Scholar 

  119. P Gross, H. Steiner, and F. Krauss, Trans. Faraday Soc., 34, 351 (1938).

    Article  Google Scholar 

  120. W J. Albery and M. H. Davies, Trans. Faraday Soc., 65, 1066 (1969).

    Article  Google Scholar 

  121. T. Riley and F. A. Long, J. Am. Chem. Soc., 84, 522 (1962).

    Article  Google Scholar 

  122. P. Salomaa, A. Kankaanperä, and M. Lajunen, Acta Chem. Scand., 20, 1790 (1966). A. J. Kresge and Y. Chiang, J. Chem. Soc., B, 58 (1967): M. M. Kreevoy and R. Eliason, J. Phys. Chem., 72, 1313 (1968).

    Google Scholar 

  123. For a summary, see J. M. Williams and M. M. Kreevoy, Adv. Phys. Org. Chem., 6, 63 (1968).

    Article  Google Scholar 

  124. H. Dahn and M. Ballenegger, Hely. Chico. Acta, 52, 2417 (1952).

    Article  Google Scholar 

  125. V. Gold and D. C. A. Waterman, J. Chem. Soc., B, 839 (1968).

    Google Scholar 

  126. M. M. Kreevoy and R. A. Kretchmer, J. Am. Chem. Soc., 86, 2435 (1964); V. Gold and M. A. Kessick, Pure Appl. Chem., 8, 273 (1964); Proc. Chem. Soc., 295 (1964).

    Google Scholar 

  127. V. Gold and M. A. Kessick, Disc. Faraday Soc., 39, 84 (1965); J. Chem. Soc., 6718 (1965).

    Google Scholar 

  128. A. J. Kresge, Pure Appt. Chem., 8, 243 (1964).

    Article  Google Scholar 

  129. V. Gold and D. C. A. Waterman, J. Chem. Soc., B, 839 (1968).

    Google Scholar 

  130. J. C. Simandoux, B. Torck, M. Hellin, and F. Coussemant, Tetrahedron Letters, No. 31, 2971 (1967).

    Article  Google Scholar 

  131. M. M. Kreevoy and R. Eliason, J. Phys. Chem., 72, 1313 (1968).

    Article  Google Scholar 

  132. H. Dahn and G. Diderich, Heiy. Chim. Acta, 54, 1950 (1971); G. Diderich and H. Dahn, Hely. Chim. Acta, 55, 1 (1972).

    Google Scholar 

  133. V. Gold and B. M. Lowe, J. Chem. Soc., A, 1923 (1968).

    Google Scholar 

  134. D. M. Goodall and F. A. Long, J. Am. Chem. Soc., 90, 238 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 R. P. Bell

About this chapter

Cite this chapter

Bell, R.P. (1973). Kinetic Isotope Effects in Proton-Transfer Reactions. In: The Proton in Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1592-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1592-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1594-1

  • Online ISBN: 978-1-4757-1592-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics