Advertisement

Isotope Effects in Proton-Transfer Equilibria

  • R. P. Bell

Abstract

Since all the processes so far considered involve the transfer of a proton from one species to another, it is to be anticipated that the substitution of hydrogen by deuterium or tritium will affect both the rates and the equilibrium constants of these processes. There are in fact two reasons why isotope effects involving hydrogen will usually be much greater than those for any other elements. In the first place, the mass ratios m H : m D : m T = 1 : 2 : 3 differ greatly from unity, while the corresponding ratios for other common elements are nearly always between unity and 1.1. In the second place, the low mass of these nuclides in itself favours large isotope effects, since these are essentially quantum effects, depending upon deviations from classical mechanics, and such deviations are greatest, other factors being equal, for particles of small mass. This last point will be justified in more detail in the subsequent discussion.

Keywords

Isotopic Composition Equilibrium Constant Isotope Effect Fractionation Factor Isotopic Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Wolfsberg, Ann. Rev. Phys. Chem., 20, 449 (1969).CrossRefGoogle Scholar
  2. 2.
    O. Redlich, Z. Phys. Chem., 28, B, 371 (1935).Google Scholar
  3. 3.
    This simplification was first introduced by H. C. Urey, J. Chem. Soc., 569 (1947), and by J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 15, 261 (1947).Google Scholar
  4. 4.
    R. P. Bell and J. E. Crooks, J. Chem. Soc., 3513 (1962).Google Scholar
  5. 5.
    R. Cardinaud, Bull. Soc. Chim. France, 34 (1960).Google Scholar
  6. 6.
    R. H. Nuttall, D. W. A. Sharp, and T. C. Waddington, J. Chem. Soc., 4965 (1960).Google Scholar
  7. 7.
    M. Laughton and R. E. Robertson, in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York, 1969.Google Scholar
  8. 8.
    M. Paabo and R. G. Bates, J. Phys. Chem., 73, 3014 (1969).CrossRefGoogle Scholar
  9. 9.
    M. Paabo and R. G. Bates, J. Phys. Chem., 74, 706 (1970).CrossRefGoogle Scholar
  10. 10.
    P Salomaa, A. Vesala, and S. Vesala, Acta Chem. Scand., 23, 2107 (1969).CrossRefGoogle Scholar
  11. 11.
    P Salomaa, R. Hakala, S. Vesala, and T. Aalto, Acta Chem. Scand., 23, 2116 (1969).CrossRefGoogle Scholar
  12. 12.
    V. Gold and C. Tomlinson, J. Chem. Soc., B, 1707 (1971).Google Scholar
  13. 13.
    W P. Jencks and K. Salvesen, J. Am. Chem. Soc., 93, 4433 (1971).CrossRefGoogle Scholar
  14. 14.
    R. A. Robinson, M. Paabo, and R. G. Bates, J. Res. Nat. Bur. Stand., A, 73, 299 (1969).Google Scholar
  15. 15.
    See, e.g., A. K. Covington, M. Paabo, R. A. Robinson, and R. G. Bates, Analyt. Chem., 40, 700 (1968): H. Kakihana, Bull. Chem. Soc. Japan, 43, 1377 (1970).Google Scholar
  16. 16.
    E. Abel, E. Bratu, and O. Redlich, Z. Phys. Chem., A, 173, 353 (1935): W. F. K. Wynne-Jones, Trans. Faraday Soc., 32, 1397 (1936); G. Schwarzenbach, A. Epprecht, and H. Erlenmeyer, Heir. Chim. Acta, 19, 1292 (1936).Google Scholar
  17. 17.
    V. Gold and B. M. Lowe, Proc. Chem. Soc., 140 (1963); J. Chem. Soc., A, 936 (1967); A. K. Covington, R. A. Robinson, and R. G. Bates, J. Phys. Chem., 70, 3820 (1966): L. Pentz and E. R. Thornton, J. Am. Chem. Soc., 89, 6931 (1967).Google Scholar
  18. 18.
    P. Salomaa, Acta Chem. Scand., 25, 367 (1971).CrossRefGoogle Scholar
  19. 19.
    M Goldblatt and W. M. Jones, J. Chem. Phys., 51. 1881 (1969).CrossRefGoogle Scholar
  20. 20.
    G. E. Walrafen, J. Chem. Phys., 36, 1035 (1962): 40, 3249 (1964); 44, 1546 (1966); 47, 114 (1967); 48, 244 (1968).Google Scholar
  21. 21.
    L. H. Jones, J. Chem. Phys., 22, 217 (1954).CrossRefGoogle Scholar
  22. 22.
    M. Falk and P. A. Giguère, Canad. J. Chem., 35, 1195 (1957); 36, 1680 (1958).CrossRefGoogle Scholar
  23. 23.
    J. Rudolph and H. Zimmermann, Z. Phys. Chem. (Frankfurt), 43, 311 (1964).Google Scholar
  24. 24.
    W. P. Jencks and K. Salvesen, J. Am. Chem. Soc., 93, 4433 (1971).CrossRefGoogle Scholar
  25. 25.
    C. A. Bunton and V. J. Shiner, J. Am. Chem. Soc., 83, 42, 3207, 3214 (1961).CrossRefGoogle Scholar
  26. 26.
    C. G. Swain and R. F. W. Bader, Tetrahedron, 10, 182, 200 (1960).CrossRefGoogle Scholar
  27. 27.
    R. A. More O’Ferrall, G. W. Koeppl, and A. J. Kresge, J. Am. Chem. Soc., 93, 1 (1971).CrossRefGoogle Scholar
  28. 28.
    C. K. Rule and V. K. LaMer, J. Am. Chem. Soc., 60, 1974 (1938).CrossRefGoogle Scholar
  29. 29.
    R. P. Bell and A. T. Kuhn, Trans. Faraday Soc., 59, 1789 (1963).CrossRefGoogle Scholar
  30. 30.
    R. P. Bell, The Proton in Chemistry, Methuen, London, 1959.Google Scholar
  31. 31.
    W. Gordy and S. C. Stanford, J. Chem. Phys., 9, 204 (1941).CrossRefGoogle Scholar
  32. 32.
    R. P. Bell and W. B. T. Miller, Trans. Faraday Soc., 59, 1147 (1963).CrossRefGoogle Scholar
  33. 33.
    A. Streitwieser and H. S. Klein, J. Am. Chem. Soc., 85, 2759 (1963).CrossRefGoogle Scholar
  34. 34.
    W. Vàn der Linde and R. E. Robertson, J. Am. Chem. Soc., 86, 4504 (1964).CrossRefGoogle Scholar
  35. 35.
    D. Northcott and R. E. Robertson, J. Phys. Chem., 73, 1559 (1969).CrossRefGoogle Scholar
  36. 36.
    R. P. Bell and J. E. Crooks, Trans. Faraday Soc., 58, 1409 (1962).CrossRefGoogle Scholar
  37. 37.
    For example, E. A. Halevi, Tetrahedron, 1, 74 (1957).CrossRefGoogle Scholar
  38. 38.
    R. E. Weston, Tetrahedron, 6, 31 (1959).CrossRefGoogle Scholar
  39. 39.
    V. W. Laurie and D. R. Herschbach, J. Chem. Phys., 37, 1687 (1962).CrossRefGoogle Scholar
  40. 40.
    J. S. Muenter, M. Kaufman, and W. Klemperer, J. Chem. Phys., 48, 3338 (1968).CrossRefGoogle Scholar
  41. 41.
    J. S. Muenter and V. W. Laurie, J. Chem. Phys., 45, 855 (1966).CrossRefGoogle Scholar
  42. 42.
    E. R. Thornton, Ann. Rev. Phys. Chem., 17, 354 (1966).CrossRefGoogle Scholar
  43. 43.
    P. Gross and A. Wischin, Trans. Faraday Soc., 32, 879 (1936); P. Gross, H. Steiner, and H. Suess, Trans Faraday Society., 32, 883 (1936); P. Gross, Z. Elektrochem., 44, 299 (1938).Google Scholar
  44. 44.
    J. C. Horwel and J. A. V. Butler, J. Chem. Soc., 1361 (1936); W. J. C. Orr and J. A. V. Butler, J. Chem. Soc., 330 (1937); W. E. Nelson and J. A. V. Butler, J. Chem. Soc., 958 (1938).Google Scholar
  45. 45.
    E. L. Purlee, J. Am. Chem. Soc., 81, 263 (1959).CrossRefGoogle Scholar
  46. 46.
    V. Gold, Adv. Phys. Org. Chem., 7, 259 (1969).CrossRefGoogle Scholar
  47. 47.
    J. Bigeleisen, J. Chem. Phys., 23, 2264 (1955).CrossRefGoogle Scholar
  48. 48.
    V. Gold, Proc. Chem. Soc., 141 (1963); A. J. Kresge and A. L. Allred, J. Am. Chem. Soc., 85, 1541 (1963); V. Gold and M. A. Kessick, Disc. Faraday Soc., 39, 84 (1965).Google Scholar
  49. 49.
    K. Heinzinger and R. E. Weston, J. Phys. Chem., 68, 744, 2179 (1965); K. Heinzinger, Z. Naturforsch., 20a, 269 (1965).Google Scholar
  50. 50.
    P. Salomaa and V. Aalto, Acta Chem. Scand., 20, 2035 (1966).CrossRefGoogle Scholar
  51. 51.
    J. I. G. Cadogan, V. Gold, and D. P. N. Satchell, J. Chem. Soc., 561 (1955); A. J. Kresge, Pure Appl. Chem., 8, 243 (1964).Google Scholar
  52. 52.
    V. Gold and B. M. Lowe, J. Chem. Soc., A, 1923 (1968).Google Scholar
  53. 53.
    W J. C. Orr and J. A. V. Butler, J. Chem. Soc., 330 (1937).Google Scholar
  54. 54.
    P. Salomaa, L. L. Schaleger, and F. A. Long, J. Am. Chem. Soc., 86, 1 (1964).CrossRefGoogle Scholar
  55. 55.
    P. Salomaa, L. L. Schaleger, and F. A. Long, J. Phys. Chem., 68, 410 (1964).CrossRefGoogle Scholar
  56. 57.
    A. J. Kresge, Pure Appl. Chem., 8, 243 (1964).CrossRefGoogle Scholar
  57. 58.
    P. Salomaa and A. Vesala, Acta Chem. Scand., 20, 1414 (1966).CrossRefGoogle Scholar
  58. 59.
    K. Heinzinger and R. E. Weston, J. Phys. Chem., 68, 2179 (1964).CrossRefGoogle Scholar
  59. 60.
    A. K. Kresge and A. L. Allred, J. Am. Chem. Soc., 85, 1541 (1963).CrossRefGoogle Scholar
  60. 61.
    V. Gold, Proc. Chem. Soc., 141 (1963).Google Scholar
  61. 62.
    V. Gold and S. Grist, J. Chem. Soc., Perk. Trans. II, 89 (1972).Google Scholar
  62. 63.
    M. Wolfsberg, J. Chem. Phys., 50, 1484 (1969).CrossRefGoogle Scholar
  63. 64.
    L. Friedman and V. J. Shiner, J. Chem. Phys., 44, 4639 (1966).CrossRefGoogle Scholar
  64. 65.
    J. W. Pyper, R. S. Newbury, and G. W. Barton, J. Chem. Phys., 46, 2253 (1967).CrossRefGoogle Scholar
  65. 66.
    V. Gold, Trans. Faraday Soc., 64, 2770 (1968).CrossRefGoogle Scholar
  66. 67.
    W. J. Albery and M. H. Davies, Trans. Faraday Soc., 65, 1059 (1969).CrossRefGoogle Scholar
  67. 68.
    V. K. LaMer and E. Noonan, J. Am. Chem. Soc., 61, 1487 (1939); E. Noonan and V. K. LaMer, J. Phys. Chem., 43, 247 (1939).Google Scholar
  68. 69.
    E. M. Arnett and D. R. McKelvey, in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York and London, 1969.Google Scholar
  69. 70.
    C. V. Krishnan, J. Phys. Chem., 74, 2356 (1970).CrossRefGoogle Scholar
  70. 71.
    P. Salomaa, Acta Chem. Scand., 25, 365 (1971).CrossRefGoogle Scholar
  71. 72.
    D. B. Dahlberg, J. Phys. Chem., 76, 2045 (1972).CrossRefGoogle Scholar
  72. 73.
    P. Salomaa, Suomen Kern., B, 45, 149 (1972).Google Scholar
  73. 74.
    P. Salomaa, A. Vesala, and S. Vesala, Acta Chem. Scand., 23, 2107 (1969).CrossRefGoogle Scholar
  74. 75.
    M. Falk and P. A. Giguère, Canad. J. Chem., 36, 1121 (1958).CrossRefGoogle Scholar
  75. 76.
    E. A. Walters and F. A. Long, J. Phys. Chem., 76, 362- (1972).Google Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations