Advertisement

Rates, Equilibria, and Structures in Proton-Transfers

  • R. P. Bell

Abstract

This chapter will be concerned mainly with the relation between the equilibrium constants of acid-base reactions and their forward and reverse rates. Relations between equilibrium constants and structure have already been considered in Chapter 6, so that the present discussion also implies relations between rates and structure. Moreover, there are many cases in which rates are easier to measure (though more difficult to interpret) than equilibria and can be compared directly with structures. We shall first consider the general basis and experimental evidence for this type of relation, followed by its molecular interpretation, with special reference to exceptional cases. We have seen in the two preceding chapters that the rates of proton-transfer reactions can be measured either directly, or indirectly through the study of acid-base catalysis, and in the following discussion information from both sources will be used indifferently.

Keywords

Equilibrium Constant Proton Transfer Tertiary Amine Energy Curve Carbon Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Eigen, Angew. Chem. Internat. Edn., 1, 3 (1964).Google Scholar
  2. 2.
    M. L. Ahrens, M. Eigen, W. Kruse, and G. Maass, Ber. Bunsengesell. Phys. Chem.,74, 380 (1970). A similar picture is presented by results for the reaction of the anion of 2,6-dinitrotoluene with a wide range of acids [M. E. Langmuir, L. Dogliotti, E. D. Black, and G. Wettermark, J. Am. Chem. Soc.,91, 2204 (1969)].Google Scholar
  3. 3.
    J. N. Brönsted and K. J. Pedersen, Z. Phys. Chem., 108, 185 (1924).Google Scholar
  4. 4.
    F. H. Westheimer, J. Org. Chem., 2, 431 (1938).CrossRefGoogle Scholar
  5. 5.
    J. N. Brönsted, Chem. Rev., 5, 322 (1928).CrossRefGoogle Scholar
  6. 6.
    S. W. Benson, J. Am. Chem. Soc., 80, 5151(1958); D. Rapp and R. E. Weston, J. Chem. Phys., 36, 2807 (1962); E. W. Schlag, J. Chem. Phys., 38, 2480 (1964); V. Gold, Trans. Faraday Soc., 60, 739 (1964); E. W. Schlag and G. L. Haller, J. Chem. Phys., 42, 584 (1965); D. M. Bishop and K. J. Laidler, J. Chem. Phys., 42, 1688 (1965); J. N. Murrell and K. J. Laidler, Trans. Faraday Soc., 64, 371 (1968).Google Scholar
  7. 7.
    M. M. Kreevoy and D. E. Konasewich, Adv. Chem. Phys., 21, 243 (1971).CrossRefGoogle Scholar
  8. 8.
    R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc., 75, 2439 (1952).CrossRefGoogle Scholar
  9. 9.
    A. J. Kresge, H. J. Chen, L. E. Hakka, and J. E. Kouba, J. Am. Chem. Soc., 93, 6174 (1971); A. J. Kresge, S. G. Mylonakis, Y. Sato, and V. P. Vitullo, J. Am. Chem. Soc., 93, 6181 (1971).Google Scholar
  10. 10.
    R. P. Bell, G. R. Hillier, J. W. Mansfield, and D. G. Street, J. Chem. Soc., B, 827 (1967).Google Scholar
  11. 12.
    See particularly J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, New York, 1963; S. Ehrenson, Progr. Phys. Org. Chem., 2, 195 (1964); C. D. Ritchie and W. F. Sager, Progr. Phys. Org. Chem., 2, 323 (1964): L. P. Hammett, Physical Organic Chemistry, 2nd edn., McGraw-Hill, New York, 1970, Ch. 11 and 12; P. R. Wells, Linear Free Energy Relationships, Academic Press, London, 1968.Google Scholar
  12. 13.
    J. Horiuti and M. Polanyi, Acta Physicochim. U.R.S.S., 2, 505 (1935).Google Scholar
  13. 14.
    R. P. Bell, Proc. Roy. Soc., A, 154, 414 (1936).CrossRefGoogle Scholar
  14. 15.
    M. G. Evans and M. Polanyi, Trans. Faraday Soc., 32, 1333 (1936).CrossRefGoogle Scholar
  15. 17.
    K. J. Pedersen, J. Phys. Chem., 38, 501 (1934); G. F. Smith, J. Chem. Soc., 1744 (1934); G. F. Smith and M. Smith, J. Chem. Soc., 1413 (1937); E. C. Baughan and R. P. Bell, Proc. Roy. Soc., A, 158, 464 (1937).Google Scholar
  16. R. P. Bell and B. G. Cox, J. Chem. Soc.,B, 654 (1971); B. G. Cox, F. G. Riddell, and D. A. R. Williams, J. Chem. Soc.,B, 859 (1970).Google Scholar
  17. 19.
    E. A. Walters and F. A. Long, J. Am. Chem. Soc., 91, 3733 (1969): F. Hibbert, F. A. Long, and E. A. Walters, J. Am. Chem. Soc., 93, 2829 (1971); F. Hibbert and F. A. Long, J. Am. Chem. Soc., 93, 2836 (1971); 94, 2647 (1972).Google Scholar
  18. 20.
    R. P. Bell and R. G. Pearson, J. Chem. Soc., 3443 (1953).Google Scholar
  19. 21.
    R. A. Marcus, J. Chem. Phys., 24, 966 (1956); Disc. Faraday Soc., 29, 21 (1960); J. Phys. Chem., 67, 853, 2889 (1963); Ann. Rev. Phys. Chem., 15, 155 (1964); J. Chem. Phys., 43, 679 (1965).Google Scholar
  20. 22.
    R. A. Marcus, J. Phys. Chem., 72, 891 (1968); A. O. Cohen and R. A. Marcus, J. Phys. Chem., 72, 4249 (1968); R. A. Marcus, J. Am. Chem. Soc., 91, 7224 (1969).Google Scholar
  21. 23.
    H. S. Johnston, Gas Phase Reaction Rate Theory,Ronald Press, New York, 1966, Ch. 11 and Appendix E.Google Scholar
  22. 24.
    E. D. German, R. R. Dogonadze, A. M. Kuznetsov, V. G. Levich, and Yu. I. Kharkats, J. Res. Inst. Catalysis Hokkaido Univ.,19 99, 115 (1971), and earlier papers quoted therein; also J. R. Murdoch, J. Am. Chem. Soc.,94 4410 (1972). The last paper emphasizes that equations such as (119) apply only to the process (b) (c) in a reaction scheme like (36), so that care is necessary in applying them to observed rates.Google Scholar
  23. 25.
    A. O. Cohen and R. A. Marcus; M. M. Kreevoy and D. E. Konasewich.Google Scholar
  24. 26.
    R. P. Bell and W. C. E. Higginson, Proc. Roy. Soc., A, 197, 141 (1949).CrossRefGoogle Scholar
  25. 27.
    F. G. Bordwell, W. J. Boyle, J. A. Hautala, and K. C. Yee, J. Am. Chem. Soc., 91, 4002 (1969); F. G. Bordwell, W. J. Boyle, and K. C. Yee, J. Am. Chem. Soc., 92, 5926 (1970); F. G. Bordwell and W. J. Boyle, J. Am. Chem. Soc., 93, 512 (1971); 94, 3907 (1972). See also M. Fukuyama, P. W. K. Flanagan, F. T. Williams, L. Frainier, S. A. Miller, and H. Schechter, J. Am. Chem. Soc., 92, 4689 (1970).Google Scholar
  26. 28.
    J. N. Brönsted and H. C. Duus, Z. Phys. Chem., 117, 299 (1925).Google Scholar
  27. 29.
    J, N. Brönsted and J. E. Vance, Z. Phys. Chem., 163, A, 240 (1933).Google Scholar
  28. 30.
    I. N. Brönsted, A. L. Nicholson, and A. Delbanco, Z. Phys. Chem., 169, A, 379 (1934).Google Scholar
  29. 31.
    H. L. Huger, J. Am. Chem. Soc., 60, 1513 (1938).Google Scholar
  30. 32.
    R. G. Pearson, J. Am. Chem. Soc., 70, 204 (1948); R. G. Pearson and F. V. Williams, J. Am. Chem. Soc., 76, 1258 (1954); M. J. Gregory and T. C. Bruice, J. Am. Chem. Soc., 89, 2327 (1967).Google Scholar
  31. 33.
    R. P. Bell and A. F. Trotman-Dickenson, J. Chem. Soc., 1288 (1949); R. P. Bell and G. L. Wilson, Trans. Faraday Soc., 46, 407 (1950).Google Scholar
  32. 34.
    Data from H. Goldschmidt and E. Mathiesen, Z. Phys. Chem., 119, 439 (1926).Google Scholar
  33. 35.
    A. F. Trotman-Dickenson, J. Chem. Soc., 1293 (1949).Google Scholar
  34. 36.
    A. G. Evans and S. D. Hamann, Trans. Faraday Soc., 47, 34 (1951).Google Scholar
  35. 37.
    R. P. Bell and J. W. Bayles, J. Chem. Soc., 1518 (1952); R. G. Pearson and D. C. Vogelsong, J. Am. Chem. Soc., 80, 1038 (1958); J. W. Bayles and A. Chetwyn, J. Chem. Soc., 2328 (1958).Google Scholar
  36. 38.
    M. S. B. Munson, J. Am. Chem. Soc., 87, 2332 (1965); J. I. Braumann, J. M. Riveros, and L. K. Blair, J. Am. Chem. Soc., 93, 3914 (1971).Google Scholar
  37. 39.
    D. H. Aue, H. M. Webb, and M. T. Bowers, J. Am. Chem. Soc., 94, 4726 (1972).CrossRefGoogle Scholar
  38. 40.
    J. I. Braumann and L. K. Blair, J. Am. Chem. Soc., 93, 3911 (1971).CrossRefGoogle Scholar
  39. 41.
    J. I. Braumann and L. K. Blair, J. Am. Chem. Soc., 92, 5986 (1970).CrossRefGoogle Scholar
  40. 42.
    R. P. Bell, M. H. Rand, and K. M. A. Wynne-Jones, Trans. Faraday Soc., 52, 1093 (1956).CrossRefGoogle Scholar
  41. 43.
    J. A. Feather and V. Gold, J. Chem. Soc., 1752 (1965).Google Scholar
  42. 44.
    F. Covitz and F. H. Westheimer, J. Am. Chem. Soc., 85, 1773 (1963).CrossRefGoogle Scholar
  43. 45.
    R. P. Bell, E. Gelles, and E. Möller, Proc. Roy. Soc., A. 198, 308 (1949).CrossRefGoogle Scholar
  44. 46.
    J. A. V. Butler, Trans. Faraday Soc., 33, 229 (1937).CrossRefGoogle Scholar
  45. 47A.
    J. Kresge, H. L. Chen, Y. Chiang, E. Murrill, M. A. Payne, and D. S. Sagatys, J. Am. Chem. Soc., 93, 413 (1971).CrossRefGoogle Scholar
  46. 48.
    F. J. W. Roughton and V. H. Booth, Biochem. J., 32, 2049 (1938); cf. A. R. Olson and P. V. Youle, J. Am. Chem. Soc., 62, 1027 (1940).Google Scholar
  47. 49.
    R. P. Bell, B. G. Cox, and B. A. Timimi, J. Chem. Soc., B, 2247 (1971): R. P. Bell, B. G. Cox, and J. B. Henshall, J. Chem. Soc., Perk. Trans. II, 1232 (1972).Google Scholar
  48. 50.
    D. D. Wheeler, D. C. Young, and D. S. Erley, J. Org. Chem., 22, 547 (1957): E. Bernatek, Acta Chem. Scand., 14, 785 (1960): J. Kagan, J. Org. Chem., 32, 4060 (1967).Google Scholar
  49. 51.
    M. Eigen, G. Ilgenfritz, and W. Kruse, Chem. Ber., 98, 1623 (1965).CrossRefGoogle Scholar
  50. 52.
    For a summary see R. P. Bell, J. O. Edwards, and R. B. Jones, in The Chemistry of Boron and its Compounds (ed. E. L. Muetterties ), Wiley, New York, 1966, pp. 209–221.Google Scholar
  51. 53.
    Personal communication from Dr. J. G. Beetlestone, 1971.Google Scholar
  52. 54.
    p R. Patel, E. C. Moreno, and J. M. Patel, J. Res. Nat. Bur. Stand., A, 75, 205 (1971).Google Scholar
  53. 55.
    R. P. Bell and J. C. McCoubrey, Proc. Roy. Soc.,A, 234, 192 (1956). The interpre- tation of these results involved an algebraic error, which was corrected in Ref. 56.Google Scholar
  54. 56.
    A. J. Kresge and Y. Chiang, J. Am. Chem. Soc., 90, 5309 (1968); 94, 2814 (1972).Google Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations