Advertisement

Incorporation of Receptors into Planar Lipid Bilayers: Ionic Transport Properties

  • Franco Gambale
  • Cesare Usai
  • Mauro Robello
  • Carla Marchetti
Part of the NATO ASI Series book series (NSSA, volume 72)

Abstract

Plasma membrane separating the cytoplasm from the surrounding medium plays a fundamental role in maintaining the homeostatic equilibrium of the cell. In fact, it is now generally recognized that cell membrane dynamically interacts with external components such as ions, molecules, and other cell membranes.

Keywords

Lipid Bilayer Sialic Acid Acetylcholine Receptor Cholera Toxin Lipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, O., Diaz, E. and Latorre, R., 1975, Voltage dependent conductance induced by hemocyanin in black, lipid films, Biochim. Biophys. Acta, 389: 444.Google Scholar
  2. Bamberg, E., Noda, K., Gross, E. and Lauger, P., 1976, Single-channel parameters of Gramicidin A, B and C, Biochim. Biophys. Acta, 419: 223.Google Scholar
  3. Bean, R.C., Shepherd, W.C., Chan, H. and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes, J. Gen. Physiol., 53: 741.Google Scholar
  4. Blumental, R. and Shamoo, A.E., 1979, Incorporation of transport molecules into black lipid membranes, in: “The Receptors,” vol. 1, R.D. O’Brien, ed., Plenum Press, New York.Google Scholar
  5. Blumental, R., Klausner, R.D. and Weinstein, J.N., 1980, Voltagedependent translocation of the asialoglycoprotein receptor across lipid membranes, Nature, 288: 333.CrossRefGoogle Scholar
  6. Boheim, G., Hanke, W., Barrantes, F.J., Eibl, H., Sackmann, B., Fels, G. and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers, Proc. Natl. Acad. Sci. USA, 78: 3586.Google Scholar
  7. Brady, R.O. and Fishman, P.H., 1979, Biotransducers of membranemediated information, Adv. Enzym., 50: 303.Google Scholar
  8. Cartaud, J., Popot, J.L., and Changeaux, J.P., 1980, Light and heavy forms of the acetylcholine receptor from Torpedo marmorata electric organ. FEBS Lett., 121–327.Google Scholar
  9. Cestaro, B., Ippolito, G., Ghidoni, R., Orlando, P. and Tettamanti, G., 1979, Interaction of GM1 ganglioside micelles with multi-layer vesicles, Bull. Mol. Biol. Med., 4: 240.Google Scholar
  10. Chatelain, P., Deleers, M., Poss, A. and Ruysschaert, J.M., 1979, A specific GT1 ganglioside-luteinizing hormone interaction induces conductance changes in lipid bilayers. Experientia, 35: 334.PubMedCrossRefGoogle Scholar
  11. Clowes, A.W., Cherry, R.J. and Chapman, D., 1971, Physical properties of lecithin-cerebroside bilayers. Biochim. Biophys. Acta, 249–301.Google Scholar
  12. Deleers, M., Poss, A. and Ruysschaert, J.M., 1976, Specific interactions between concanavalin A and glycolipid incorporated into planar bilayer membranes. Bioch. Biophys. Res. Comm., 72: 709.Google Scholar
  13. Deleers, M., Chatelain, P., Poss, A. and Ruysschaert, J.M., 1979, Specific interaction between follitropin and GM1 ganglioside incorporated into lipid membranes. Bloch. Biophys. Res. Comm., 89: 1102.Google Scholar
  14. Feldberg, S.W. and Delgado, A.B., 1978, Inner voltage clamping. A method for studying interactions among hydrophobic ions in a lipid bilayer, Bioph. J., 21: 61.Google Scholar
  15. Fettiplace, R., Gordon, L.G.M., Hladky, S.B., Requena, J., Zingsheim, H.P. and Haydon, D.A., 1975, Techniques in the formation and examination of “black” lipid bilayer membranesGoogle Scholar
  16. Chapter 1 in: “Methods in Membrane Biology,” vol. 4, E.D. Korn, ed., Plenum Press, New York.Google Scholar
  17. Finkelstein, A., Rubin, L.L. and Tzeng, M.C., 1976; Black widow spider venom: effect of purified toxin on lipid bilayer membranes, Science, 193: 1009.Google Scholar
  18. Finkelstein, A., and Andersen, U.S., 1981; The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol., 59: 155.Google Scholar
  19. Gabler, R., 1978, “Electrical Interactions in Molecular Biophysics,” Academic Press, New York.Google Scholar
  20. Gambale, F., Robello, M., Usai, C. and Marchetti, C., 1982, Properties of ionic transport through phospholipid-glycolipid artificial bilayers, Biochim. Biophys. Acta 693: 165Google Scholar
  21. Gomperts, B.D., 1976, Calcium and cell activation, in: “Receptors and Recognition,” vol. 2, series A, P. Cuatrecasas and M.F. Greaves, eds., Chapman and Hall, London.Google Scholar
  22. Goodal, M.C., Bradley, R.J., Saccomanni, G. and Romine, W.O., 1974Google Scholar
  23. Quantum conductance changes in lipid bilayer membranes containing a cholinergic hydrophobic protein from Electrophorus electroplax, Biochim. Biophys. Acta, 352: 192.Google Scholar
  24. Gorio, A., Carmignoto, G., Facci, L. and Finesso, M., 1980, Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Res., 197: 236.Google Scholar
  25. Grollman, E.F., Lee, G., Ambesi-Impiombato, F.S., Meldolesi, M.F., Aloj, S.M., Coon, H.G., Kahack, H.R. and Kohn, L.D., 1977, Effects of thyrotropin on the thyroid cell membranes: hyperpolarization induced by hormone-receptor interaction, Proc. Natl. Acad. Sci. USA, 74: 2352.Google Scholar
  26. Hakomori, S.I., 1981, Glycosphingolipids in cellular interaction, differentiation and oncogenesis, Ann Rev. Biochem., 50: 733.Google Scholar
  27. Hladky, S.B. and Haydon, D.A., 1972, Ion transfer across lipid membranes in the presence of Gramicidin A - I: Studies of the unit conductance channel, Biochim. Biophys. Acta, 274: 294.Google Scholar
  28. Hughes, R.C., 1975, The complex carbohydrates of mammalian cell surfaces and their biological roles, Essays in Biochem., 11: 1.Google Scholar
  29. Jones, M.N., 1975, Membrane models, Chapter 8 in: “Biological Interfaces,” Elsevier, Amsterdam. Katz, B., 1966, “Nerve, Muscle and Synapsis,” McGraw-Hill, New York.Google Scholar
  30. Kemp, G., Dolly, J.A., Barnard, E.A. and Wenner, C.E., 1973, Reconstitution of a partially purified end-plate acetylcholine receptor preparation in lipid bilayer membranes, Biochem. Biophys. Res. Commun., 54: 607.Google Scholar
  31. Kolb-Bachofen, V., 1981, Hepatic receptor for asialoglycoproteins. Ultrastructural demonstration of ligand-induced micro-aggregation of receptors, Biochim. Biophys. Acta, 645: 293.Google Scholar
  32. Kurosky, A., Markel, D.E., Peterson, J.W. and Fitch, W.M., 1977, Primary structure of cholera toxin ß-chain: a glycoprotein hormone analog, Science, 195: 299.PubMedCrossRefGoogle Scholar
  33. Ledeen, R.W. and Yu, R.K., 1973, Structure and enzymic degradation of sphingolipids, Chapter 4 in: “Lysosomes and Storage Diseases,” H.G. Hers and F. Van Hoof, eds., Academic Press, New York.Google Scholar
  34. Lindstrom, J., Anholt, R., Sinarson, B., Engel, A., Osame, M. and Montai, M., 1980, Purification of acetylcholine receptors, reconstitution into lipid vesicles and study of agonistinduced cation channel regulation, J. Biol. Chem., 255: 8340.Google Scholar
  35. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, in: “Current Topics in Membranes and Transport,” vol. 9, Academic Press, New York.Google Scholar
  36. Menestrina, G. and Antolini, R., 1982, The dependence of the conductance of the hemocyanin channel on applied potential and ionic concentration with mono-and divalent cations, Biochim. Biophys. Acta, 668: 673.Google Scholar
  37. Mkheyan, E.E., Akopov, S.E., Sotsky, 0.P. and Badzhinyan, S.A., 1981, Some physical parameters of cerebroside and phospholipid-cerebroside membranes, Biofizika, 26: 48.Google Scholar
  38. Montai, M. and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. USA, 69: 3561.Google Scholar
  39. Montai, M., Darzson, A. and Schindler, H., 1981, Functional reassembly of membrane proteins in planar lipid bilayers, Q. Rev. Biophys., 14: 1.Google Scholar
  40. Mueller, P., Rudin, D.O., Ti Tien, H. and Wescott, W.C., 1962, Reconstitution of excitable membrane structure in vitro, Circulation, 26: 1167.CrossRefGoogle Scholar
  41. Mullin, B.R., Fishman, P.H., Lee, G., Aloj, S.M., Ledley, F.D., Winaud, R.J., Kohn, L. and Brady, R.O., 1976, Thyrotropinganglioside interactions and their relationship to the structure and function of thyrotropin receptors, Proc. Natl. Acad. Sci. USA, 73: 842.Google Scholar
  42. Neher, E. and Sackmann, B., 1976, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, 250: 68.Google Scholar
  43. Nelson, N., Anholt, R., Lindstrom, J. and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. USA, 77: 3057.Google Scholar
  44. O’Keefe, E. and Cuatrecasas, P., 1978, Cholera toxin and membrane gangliosides: binding and adenylate cyclase activation in normal and transformed cells, J. Membrane Biol., 42: 61.CrossRefGoogle Scholar
  45. Parisi, M., Rivas, E. and De Robertis, E., 1971, Conductance changes produced by acetylcholine in lipidic membranes containing a proteolipid from Electrophorus, Science, 172: 56.PubMedCrossRefGoogle Scholar
  46. Poss, A., Deleers, M. and Ruysschaert, J.M., 1978, Evidence for a specific interaction between GT1 ganglioside incorporated into bilayer membranes and thyrotropin, FEBS Lett., 86: 160.PubMedCrossRefGoogle Scholar
  47. Rasmussen, H., 1975, Ions as “second messengers,” in: “Cell Membranes. Biochemistry, Cell Biology and Pathology,” G. Weiss mann and S. Claiborne, eds., HP Publishing Company, New York.Google Scholar
  48. Reader, T.A. and De Robertis, E., 1974, The response of artificial lipid membranes containing a cholinergic hydrophobic protein from Electrophorus electroplax, Biochim. Biophys. Acta, 352: 192.Google Scholar
  49. Schindler, H. and Rosenbush, J.P., 1978, Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. USA, 75: 3751.Google Scholar
  50. Schindler, H. and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. USA, 77: 3052.Google Scholar
  51. Szabo, G., Eisenman, G., Laprade, R., Ciani, S.M. and Krasne, S., 1973, Experimentally observed effects of carriers on the electrical properties of bilayer membranes-equilibrium domain, in: “Membranes,” vol. 2, G. Eisenman, ed., Marcel Dekker, New York.Google Scholar
  52. Takagi, M., Azuma, K. and Kishimoto, U., 1965, A new method for the formation of bilayer membranes in aqueous solution, Annu. Rep. Biol. Works Fac. Sci. Osaka Univ., 13: 107.Google Scholar
  53. Ti Tien, H., 1974, “Bilayer lipid membranes (BLM). Theory and practice,” Marcel Dekker, New York.Google Scholar
  54. Tosteson, M.T. and Tosteson, D.C., 1978, Bilayers containing gangliosides develop channels when exposed to cholera toxin, Nature, 275: 142.PubMedCrossRefGoogle Scholar
  55. Urry, D.W., 1971, The gramicidin A trasmembrane channel: a proposed n-(L.D) helix, Proc. Natl. Acad. Sci. USA, 68: 672.Google Scholar
  56. Vodyanoy, V. and Murphy, R.B., 1982, Solvent-free lipid bimolecular membranes of large surface area, Biochim. Biophys. Acta, 687: 189.Google Scholar
  57. White, S.H., 1978, Formation of “solvent-free” black lipid bilayer membranes from glyceril monooleate dispersed in squalene, Biophys. J., 23: 337.Google Scholar
  58. Wu, W.C.S., Moore, H.H. and Raftery, M.A., 1981, Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor, Proc. Natl. Acad. Sci. USA, 78: 775.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Franco Gambale
    • 1
  • Cesare Usai
    • 1
  • Mauro Robello
    • 2
  • Carla Marchetti
    • 1
    • 3
  1. 1.Istituto di Cibernetica e BiofisicaCamogli, GenovaItaly
  2. 2.Istituto di Scienze Fisiche-Università di GenovaGenovaItaly
  3. 3.FIDIA Research LaboratoriesAbano Terme, PadovaItaly

Personalised recommendations