Advertisement

The Role of Phospholipids in Receptor Binding in the Nervous System

  • Michael Giesing
Part of the NATO ASI Series book series (NSSA, volume 72)

Abstract

Nerve tissue is richer in phospholipids (PL) than most other parenchymal organs. Furthermore, neurons and glia contain very small amounts of neutral lipids, i.e. free fatty acids, triacylglycerols and cholesteryl esters. The averaged PL/protein ratio of close to one (Giesing, 1978) is suggestive of a dynamic protein-lipid interplay serving as the control framework of specific membrane functions, i.e. neurotransmitter receptor binding and transmission of signals across the lipid bilayer. The fluidity of membrane lipids has been established as an essential determinant in a variety of membrane-associated events that are common in all component cells. Chemical effectors of membrane fluidity are — in order of significance — the level of cholesterol (Shinitzky and Henkart, 1979), the degree of saturation of the acyl chains, the level of sphingoniyelin (Barenholz and Thompson, 1980), the ratio phosphatidylethanolamine/phosphatidylcholine (Hirata and Axelrod, 1980) and the ratio protein/lipid (Shinitzky and Henkart, 1979).

Keywords

Receptor Binding Adenylate Cyclase Synaptic Plasma Membrane Lipid Fluidity Cerebroside Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.G. Abood, M. Butler and D. Reynolds, Effect of calcium and physical state of neutral membranes on phosphatidylserine requirement for opiate binding, Mol. Pharmac. 17: 290 (1980).Google Scholar
  2. 2.
    M.B. Anand-Srivastava and R.A. Johnson, Role ofGoogle Scholar
  3. 3.
    phospholipids in coupling of adenosine and dopamine receptors to striatal adenylate cyclase, J.Neurochem. 36, 5: 1819 (1981).Google Scholar
  4. 4.
    G.R. Anderson and R.M. Mazo, Models for boundary effects on molecular rotation in membranes, Biopolymers 19, 1597 (1980).CrossRefGoogle Scholar
  5. 5.
    I-J. Andreasen, D.R. Doerge and M.G. McNamee, Effects of phospholipase A2 on the binding and ion permeability control properties of the acetylcholine receptor. Arch.Biochem.Biophys. 194, 2: 468 (1979).Google Scholar
  6. 6.
    Y. Barenholz ana i.E. Thumpsua, Sphingomyelin in bilayers and biological membranes, Biochim.Google Scholar
  7. 7.
    Biophys. Acta 604: 129 (1980).Google Scholar
  8. 8.
    N.G. Bazan, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim. Biophys. Acta 218: 1 (1970).CrossRefGoogle Scholar
  9. 9.
    J.M. Bidlack and L.G. Abood, Solubilization of the opiate receptor, Life Sci. 27: 331 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Borochov and M. Shinitzky, Vertical displacement of membrane proteins mediated by changes in micro-viscosity, Proc. Natl. Acad. Sci. USA 73: 4526 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    R.J. Cherry, U. Müller, C. Holenstein and M.P. Heyn, Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles, Biochim. Biophys. Acta 596: 145 (1980).CrossRefGoogle Scholar
  12. 12.
    T.H. Chiu and H.C. Rosenberg, Endogenous modulator of benzodiazenine binding in rat cortex, J. Neurochem. 36: 336 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    T.M. Cho, J.S. Cho and H.H. Loh, 3H-cerebroside sulfate redistribution induced by cation, opiate or phosphatidylserine, Life Sci. 19: 117 (1976, a)Google Scholar
  14. 14.
    T.M. Cho, J.S. Cho and H.H. Loh, A model system for opiate-receptor interactions: mechanisms of opiate-cerebroside sulfate interaction, Life Sci.18: 231 (1976, b).Google Scholar
  15. 15.
    P.T. Crews, F. Hirata and J. Axelrod, Phospholipid methyltransferase in synaptosomal membranes, Neurochem. Res. 5, 9: 983 (1980).Google Scholar
  16. 16.
    M. Criado, H. Eibl and F.J. Barrantes, Effect of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21: 3622 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    L.M. van Deenen, Topology and dynamics of phospholipids in membranes. FEBS Letters 123, 1: 3 (1981).Google Scholar
  18. 18.
    C.E. Dunlap III, F.M. Leslie, M. Rado and B.M. Cox, Ascorbate destruction of opiate stereospecific binding in guinea pig brain homogenate, Mol.Pharmac. 16: 105 (1979).Google Scholar
  19. 19.
    S.J. Enna and S.H. Snyder, Influences of ions, enzymes and detergents on y-aminobutyric acid receptor binding in synaptic membranes of rat brain, Molec. Pharmac. 13: 442 (1977).Google Scholar
  20. 20.
    H.J. Galla, W. Hartmann, U. Theilen and E. Sackmann, On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes, J. Membrane Biol. 48, 215 (1975).CrossRefGoogle Scholar
  21. 21.
    D.F. Gerson, Interfacial free energies of the positioning and aggregation of membrane proteins, Biophys. J. 37: 145 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    C.T. Giambalvo and P. Rosenberg, The effect of phospholipases and proteases in the binding of y-aminobutyric acid to junctional complexes of rat cerebellum, Biochim. Biophys. Acta 436: 741 (1976).CrossRefGoogle Scholar
  23. 23.
    M. Giesing, Explantatkulturen des Nervensystems: Ein neues Modell für die Neurochemie. Bericht von der Regulation einiger Lipidbausteine, Habilitationsschrift, Universität Bonn, 1978.Google Scholar
  24. 24.
    M. Giesing, Organized cultures of nerve tissue. A novel model system for studies of lipid protein interaction on the functional level, in: “Physical Methods in Biological Membranes and tNTir Model Systems: Possibilities and Limits”, F. Conti, W. Blumberg, J. de Gier, F. Pocchiari eds. (1983), Plenum Press (in press).Google Scholar
  25. 25.
    M. Giesing and U. Gerken, The effects of carbamylcholine on extrasynaptic phosphatidylcholine biosynthesis in grey matter of cerebral cortex, in: “Phospholipids in the Nervous System”, G.B. Ansell, L.A.Horrocks and G. Porcellati eds., Raven Press, New York (in press) (1982, a).Google Scholar
  26. 26.
    M. Giesing and U. Gerken, The role of asymmetrically distributed phospnolipids in the binding of gammaaminobutyric acid, in: “Basic and Clinical Aspects of Molecular Neurobi5 ogy”, A.M. Giuffrida Stella, G. Gambos, G. Benzi and H.S. Bachelard, eds., Fondazione Internazionale Menarini, Milano, Italy,p.135 ff. (1982, b).Google Scholar
  27. 27.
    M. Giesing and F. Zilliken, Analysis of lipid components in organotypic cultures of cerebellum during development, Brain Research 111: 212 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    J.L. Goldstein, R.G.W. Anderson and M.S. Brown, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature 279: 679 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Guidotti, G. Toffano and E. Costa, An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain, Nature 275: 553 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    F. Hanski, G. Rimon and A. Levitzki, Adenylate cyclase activation by the ß-adrenergic receptors as a diffusion-controlled process, Biochemistry 18: 846 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    D.S. Heron, M. Shinitzky, M. Hershkovitz and D. Samuel, Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes, Proc.Natl. Acad.Sci. USA 77: 7463 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    D.S. Heron, M. Israeli, M. Hershkovitz, D. Samuel and M. Shinitzky, Lipid-induced modulation of opiate receptors in mouse brain membranes, Eur.J. Pharmacol. 72: 361 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    F. Hirata and J. Axelrod, Phospholipid methylation and biological signal transmission, Science 209: 1082 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    F. IIirata, W.J. Strittmatter and J. Axelrod, ß-adrenergic receptor agonists increase phospholipid methylation, membrane fluidity and ß-adrenergic receptoradenylate cyclase coupling, Proc.Natl.Acad.Sci.USA 76: 368 (1979).CrossRefGoogle Scholar
  35. 35.
    H.C. Jarell, R. Deslauriers, W.H. McGregor and J.C.P. Smith, Interaction of opiate peptides with model membranes. A carbon-13 nuclear magnetic study of enkephalin binding to phosphatidylserine, Biochemistry 19, 385 (1980).CrossRefGoogle Scholar
  36. 36.
    D.A. Johnson, R. Cooke, H.H. Loh, Effect of opiate agonists and antagonists on lipid bilayer fluidity, Mol. Pharmacol. 16: 154 (1979).Google Scholar
  37. 37.
    P.H. Kelly and K.E. Moore, Decrease of neocortical choline acetyltransferase after lesions of the globus pallidus in rats, Exp. Neuro1. 61: 475 (1978).Google Scholar
  38. 38.
    W. Kleemann and H.M. Cornell, Interactions of proteins and cholesterol with lipid bilayer membranes, Biochim. Biophys. Acta 419: 206 (1976).CrossRefGoogle Scholar
  39. 39.
    B. De Kruijff and P. Baken, Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer, Biochim. Biophys.Acta 507: 38 (1978).CrossRefGoogle Scholar
  40. 40.
    P.Y. Law, R.A. Harris, H.H. Loh and E.L. Way, Evidence for the involvement of cerebroside sulfate in opiate receptor binding: studies with azure a and jimpy mutant mice, J. Pharmacol. Exp. Therap. 207: 458 (1978).Google Scholar
  41. 41.
    R.J. Lefkovitz, D. Mullikin, C. Wood, T. Goore and C. Mukherjee, Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes, J. Biol. Chem. 252: 5295 (1977).Google Scholar
  42. 42.
    F. Lembeck, A. Saria and N. Mayer, Substance P: model studies of its binding to phospholipids, Naunyn-Schmiedeberg’s Arch. Pharmacol. 306: 189 (1979).Google Scholar
  43. 43.
    P.R. Lewis and C.C.D. Shute, Cholinergie pathways in the CNS in: “Handbook of Psychopharmacology, Vol.9: Chemical Pathways in the Brain”, L.L. Iversen, S.D. Iversen and S.H. Snyder eds., p. 315 ff. (1978), Plenum Press, New York.Google Scholar
  44. 44.
    K.G. Lloyd and K. Beaumont, Possible role of phospholipids in GABA receptor function in human and rat brain, Brain Res. Bull. 5: 285 (1980).Google Scholar
  45. 45.
    K.G. Lloyd and L. Davidson, 3H-GABA binding in brains from Huntington’s thora patients: altered regulation by phospholipids? Science 205: 1147 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    E.G. McGeer, H.C. Fibiger, P.L. McGeer and S.Brooke, Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-hydroxydopamine administration, Brain Res. 52: 289 (1973).PubMedCrossRefGoogle Scholar
  47. 47.
    A. McGivney, F.T. Crews, F. Hirata, J. Axelrod and R.P. Siragavian, Rat basophilic leukemia cell lines defective in phospholipid methyltransferase enzymes, Ca2+ influx and histamine release: reconstitution by hybridization, Proc. Natl.Acad.Sci. USA 78: 6176 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    M.D. Majewska, R. Manning and.G.Y. Sun, Effects of postdecapitative ischemia on arachidonate release from brain synaptosomes, Neurochem. Res. 6: 567 (1981).Google Scholar
  49. 49.
    C.C. Mao, G. Marco, A. Revuelta, L. Bertilsson and E. Costa, The turnover rate of y-aminobutyric acid in the nuclei of telencephalon: implications in the pharmacology of anti-psychotics and of a minor tranquilizer, Biol. Psychiat. 12: 359 (1977).Google Scholar
  50. 50.
    J.W. Phillis, Evidence for cholinergic transmission in the cerebral cortex, in: “Neurohumoral Coding of Brain Function”, R.D. Myers and R.R. Drucker-Colin, eds., Plenum Press, New York, p.57 ff. (1975).Google Scholar
  51. 51.
    G. Rimon, E. Hanski, S. Braun und A. Levitzki, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature 276: 394 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    P.H. Rosenberg, Effects of halothane, lidocaine and 5-hydroxytryptamine on fluidity of synaptic plasma membranes, myelin membranes and synaptic mitochondrial membranes, Arch. Pharmacol. 307: 199 (1979).Google Scholar
  53. 53.
    J.M. Saavedra, Increased adrenaline, ß-adrenoreceptor stimulation and phospholipid methylation in pineal gland of spontaneously hypersensitive rats, Clinical Science 59: 239 (1980).Google Scholar
  54. 54.
    P.G. Saffmann and M. Delbruck, Brownian movement in biological membranes, Proc. Natl. Acad. Sci. USA 72: 3111 (1975).CrossRefGoogle Scholar
  55. 55.
    R. Salesse, J. Garnier and D. Daveloose, Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 2. Fluidity-controlled coupling between the subunits of the adenylate cyclase system, Biochemistry 21: 1587 (1982, b.).Google Scholar
  56. 56.
    R. Salesse, J. Garnier, F. Leferrier, D. Daveloose and J. Viret, Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 1. Parallel-drug-induced changes in the bilayer fluidity and adenylate cyclase activity, Biochemistry 21: 1581 (1982, a.).Google Scholar
  57. 57.
    J. Schlessinger, The mechanism and role of hormone-induced clustering of membrane receptors, Trends Biochem. Sci. 5: 210 (1980).Google Scholar
  58. 58.
    F. Schneweiss, D. Naquira, K. Rosenbeck and A.S. Schneider, Cholinergic stimulants and excess potassium ion increase in the fluidity of plasma membranes isolated from adrenal.chromaffin cells, Biochim. Biophys. Acta 555: 460 (1979).CrossRefGoogle Scholar
  59. 59.
    G.Y. Sciu and B.S. Leung, Phospholipids and acyl groups of subcellular fractions from human intracranial tissues, J. Lipid Res. 15: 423 (1974).Google Scholar
  60. 60.
    J.C. Shi and H. Young, The alteration of serotonin binding sites in aged human brain, Life Sci. 23: 1441 (1978).CrossRefGoogle Scholar
  61. 61.
    M. Shinitzky, The concept of passive modulation of membrane responses, Dev. Cell Biol. 4: 173 (1979).Google Scholar
  62. 62.
    M. Shinitzky and P. Henkart, Fluidity of cell membranes: current concepts and trends, Intl. Rev. Cytol. 60: 121 (1979).CrossRefGoogle Scholar
  63. 63.
    C.C.D. Shute and P.R. Lewis,The ascending cholinergie reticular system: neocortical, olfactory and sub-cortical projections, Brain 90: 497 (1967).PubMedCrossRefGoogle Scholar
  64. 64.
    H. Tamir, W. Brunner, D. Casper and M.M. Rapport, Enhancement by gangliosides of the binding of serotonin to serotonin binding protein, J. Neurochem. 34: 1719 (1980).PubMedCrossRefGoogle Scholar
  65. 65.
    G. Toffano, C. Aldinio, M. Bolzano, A. Leon and G. Savoini, Regulation of GABA receptor binding to synaptic plasma membrane of rat cerebral cortex: the role of endogenous phospholipids, Brain Res. 222: 95 (1981).PubMedCrossRefGoogle Scholar
  66. 66.
    A.M. Tolkovsky, S. Braun and C.A. Levitzki, Kinetics of interaction between ß-receptors, GPT protein and the catalytic unit of turkey erythrocyte adenylate cyclase, Proc. Natl. Acad. Sci. USA 79: 213 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    A.I. Tolkovsky and A. Levitzki, Mode of coupling between the ß-adrenergic receptor and adenylate cyclase in turkey erythrocytes, Biochemistry 17: 3795 (1978).PubMedCrossRefGoogle Scholar
  68. 68.
    L.T. Williams and R.J. Lefkovitz, Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the ß-adrenergic receptor, J. Biol. Chem. 252: 7207 (1977).PubMedGoogle Scholar
  69. 69.
    D.R. Wong and J.S. Horng, Na -independent binding of GABA to the Triton-X-100 treated synaptic membranes from cerebellum of rat brain, Life Sci. 20: 445 (1977).PubMedCrossRefGoogle Scholar
  70. 70.
    C.S.C. Wu, N.M. Lee, H.H. Loh, J.T. Yang and C.H. Li, ß-endorphin: formation of (t-helix in lipid solutions, Proc. Natl. Acad.Sci. USA 76: 3656 (1979).PubMedCrossRefGoogle Scholar
  71. 71.
    F. Wunderlich, V. Ronai, J. Speth, J. Seelig and A. Blumen, Thermotropic lipid-clustering in tetrahymana membranes, Biochemistry 14: 3730 (1975).PubMedCrossRefGoogle Scholar
  72. 72.
    J.R. Yandrasitz, Conin, B. Masley and D. Rowe, Evaluation of the binding of serotonin by isolated CNS acidic lipids, Neurochem. Res. 5: 465 (1980).Google Scholar
  73. 73.
    Y. Yoneda and K. Kuriyama, Presence of a low molecular weight endogenous inhibitor on 3Hmuscimol binding in synaptic membranes, Nature 285: 670 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Yuli, W. Wilbrandt and M. Shinitzky, Glucose transport through cell membranes of modified lipid fluidity, Biochemistry 70: 4250 (1981).CrossRefGoogle Scholar
  75. 75.
    G. Zsilla, D.L. Cheney, G. Racagni and E. Costa, Correlation between analgesia and the decrease of acetylcholine turnover rate in cortex and hippo-R campus elicited by morphine, meperidine, Vivimol and azidomorphin, J. Pharmac. Exp. Ther. 199: 662 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Michael Giesing
    • 1
    • 2
  1. 1.Labor für NervengewebekulturInstitut für Physiologische Chemie der UniversitätBonnGFR
  2. 2.A. Nattermann & Cie. GmbHKöln 30Germany

Personalised recommendations