Plasma Physics pp 475-485 | Cite as

Diffusion Due to a Single Wave in a Magnetized Plasma

  • Gary R. Smith
  • Allan N. Kaufman
Part of the Nobel Symposium Committee (1976) book series (NOFS, volume 36)


The nature of charged-particle motion in the presence of a spectrum of waves usually depends on the width of the spectrum. In a narrow spectrum (modeled as a single wave), particles may be trapped in the potential wells of the wave and thereby have a limited acceleration. In a broad spectrum, resonant particles diffuse in velocity space, and thereby undergo a more extensive (stochastic) acceleration. In contrast to these well-known results we find1 that a single wave in a magnetized plasma may cause particle diffusion.


Particle Motion Particle Trajectory Electron Cyclotron Resonance Langmuir Wave Single Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Smith and A. N. Kaufman, Phys. Rev. Lett. 34, 1613 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Taylor and. E. W. Laing, Phys. Rev, Lett. 35, 1306 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    M. Hénon and C. Heiles, Astron. J. 69, 73 (1964). Parti in an anisotropic two-dimensional potential wellGoogle Scholar
  4. 4.
    D. A. Dunnett, E. W. Laing and J. B. Taylor, J. Math, F.- 9, 1819 (1968). Particle in a spatially modulated magnetic field.Google Scholar
  5. 5.
    F. Jaeger, A. J. Lichtenberg and M. A. Lieberman, Plasma Phys. 14, 1073 (1972). Electron cyclotron resonance heating.Google Scholar
  6. 6.
    R. E. Aamodt, Phys. Rev. Lett. 27, 135 (1971); M. N. Rosenbluth, Phys. Rev. Lett. 297–408 (1972); A. V. Timof:n Nucl. Fusion 14, 165 (1974). Superadiabaticity in mire machines.. and.Google Scholar
  7. 7.
    J. M. Finn, Nuci. Fusion 12, 845 (1975). Magnetic field lines in tokamaks in the presence of resistive tearing modes.Google Scholar
  8. 8.
    G. M. Zaslayskii and B. V. Chirikov, Usp. Fis. Nauk. 105, 3 (1971) [Soy. Phys. Usp. 14, 549 (1972)3.Google Scholar
  9. 9.
    T. H. Dupree, Phys. Fluids 9, 1773 (1966); J. Weinstock, Phys. Fluids 11 1977 (19687.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Gary R. Smith
    • 1
  • Allan N. Kaufman
    • 1
  1. 1.Department of Physics and Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations