The Winner of the Vector-Model Look-Alike Contest

  • Howard Georgi
Part of the Studies in the Natural Sciences book series (SNS, volume 12)


In the previous talks, Fritzsch and Barnett have discussed the b quark as a possible explanation of the high-y anomaly. The important question is, how can we incorporate the V+A coupling of the b quark to the u quark in a unified model of weak and electromagnetic interactions. The simplest model with the u-b coupling is the vector model,1 an SU(2) × U(1) model in which both left- and right-handed components of all quarks are in SU(2) doublets. Alas, it is ruled out by neutral current data,2 which shows significant parity violation in the hadronic neutral current. The standard SU(2) × U(l) model,3 in which only left-handed quarks are in doublets, agrees well with neutral current data (see Fig. 1), but has no V+A u-b coupling. In the standard model, the high-y anomaly must be attributed to the Q2 dependence of antiquark and strange-quark distributions in the nucleon induced by QCD. This is probably not enough to explain data.4 Furthermore, as we have heard in Bouchiat’s talk, the standard model may be in trouble with experiments detecting parity violation in atomic physics.


Parity Violation Vector Model Neutrino Scattering Intermediate Vector Boson Neutral Current Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. De Rujula, H. Georgi and S.L. Glashow, Phys. Rev. D12, 3589 (1975);Google Scholar
  2. G. Branco, T. Hagiwara and R.N. Mohapatra, CCNY-HEP7518 and C00–223B-84 (1975);Google Scholar
  3. E. Golowich and B.R. Holstein, Phys. Rev. Lett. 35, 831 (1975);CrossRefGoogle Scholar
  4. A. Fernandez-Pacheco, A. Morales, R. Nunez-Lagos, and J. Sanchez-Guillen, GIFT report;Google Scholar
  5. H. Fritzsch, M. Gell-Mann, and P. Minkowski, Phys. Lett. 59B, 256 (1975);Google Scholar
  6. F. Wilcsek, A. Zee, R.L. Kingsley, and S.B. Treiman, Phys. Rev. D12, 2768 (1975);CrossRefGoogle Scholar
  7. S. Pakvasa, W.A. Simmons, and S.F. Tuan, Phys. Rev. Lett. 35, 702 (1975).CrossRefGoogle Scholar
  8. 2.
    A. Benvenutti et al., Phys. Rev. Lett. 37, 1039 (1976);CrossRefGoogle Scholar
  9. J. Blietschau et al., preprint CERN/EP/Phys 76–55;Google Scholar
  10. B.C. Barsch, Caltech preprint CALT-68–544;Google Scholar
  11. D. Cline et al., Phys. Rev. Lett. 37, 252, 648 (1976);CrossRefGoogle Scholar
  12. W. Lee et al., Phys. Rev. Lett. 37, 186 (1976);CrossRefGoogle Scholar
  13. M. Barnett, Harvard preprint; V. Barger and D.V. Nanopoulos, Phys. Lett. 63B, 168 (1976);Google Scholar
  14. C.H. Albright et al., preprint, Fermilab-Pub-76/40TH9;Google Scholar
  15. D.P. Sidhu, preprints BNL-21511 and BNL-21468.Google Scholar
  16. 3.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);CrossRefGoogle Scholar
  17. A. Salam in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8) edited by N. Svartholm ( Almquist and Wiksell, Stockholm 1968 ) p. 367.Google Scholar
  18. 4.
    M. Barnett, H. Georgi and H.D. Politzer, Phys. Rev. Lett. 37, 1313 (1976);CrossRefGoogle Scholar
  19. J. Kaplan and F. Martin, Paris preprint, PAR/LPTHE76/18 (1976).Google Scholar
  20. 5.
    A. De Rujula, H. Georgi and S.L. Glashow, preprint, HUTP-77/A002 (1977).Google Scholar
  21. 6.
    R.N. Mohapatra and P.P. Sidhu, preprint, CCNY-HEP76/14 (1976).Google Scholar
  22. 7.
    A. De Rujula, H. Georgi, S.L. Glashow and H. Quinn, Rev. Mod. Phys. 46, 391 (1974).CrossRefGoogle Scholar
  23. 8.
    A. Benvenutti et al., Phys. Rev. Lett. 36, 1478 (1976); ibid. 37, 189 (1976); B.C. Barish, Caltech preprint CALT-68–544.Google Scholar
  24. 9.
    M. Barnett, Phys. Rev. Lett. 36, 1163 (1976).CrossRefGoogle Scholar
  25. 10.
    S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).Google Scholar
  26. 11.
    S.L. Glashow and S. Weinberg, Harvard preprint HUTP-76/A158 (1976).Google Scholar
  27. 12.
    Preliminary data quoted by G. Goldhaber, Loeb Lectures at Harvard University (1976, unpublished).Google Scholar
  28. 13.
    For a review, see M. Barnett, SLAC-PUB 1850.Google Scholar
  29. 14.
    F.J. Hasert et al., Phys. Lett. 46B, 121 (1973)CrossRefGoogle Scholar
  30. J. Blietschau et al., preprint CERN/EP/PHYS 76–42 (1976);Google Scholar
  31. H. Williams, talk at the APS Meeting at Brookhaven National Laboratory, October 1976;Google Scholar
  32. F. Reines et al., Phys. Rev. Lett. 37, 315 (1976).CrossRefGoogle Scholar
  33. 15.
    P.E.G. Baird, M.W.S.M. Brimicombe, G.J. Roberts, P.G.H. Sandars, D.C. Soreide, E.N. Fortson, L.L. Lewis, E.G. Lindahl and D.C. Soreide, Letters to Nature 264, 528 (1976);CrossRefGoogle Scholar
  34. M.A. Bouchiat and C.C. Bouchiat, Phys. Lett. 48B, 111 (1974);CrossRefGoogle Scholar
  35. M.W.S.M. Brimicombe, C.F. Loving and P.G.H. Sandars, J. Phys. B1, 237 (1976);Google Scholar
  36. E.M. Henley and L. Wilets, Phys. Rev. A14, 1411 (1976);CrossRefGoogle Scholar
  37. I. Grand, N.C. Pyper and P.G.H. Sandars (to be published);Google Scholar
  38. I.B. Khriplovich, Soviet Phys. JETP (to be published);Google Scholar
  39. D.C. Soreide et al., Phys. Rev. Lett. 36, 352 (1976).CrossRefGoogle Scholar
  40. For a review see I.B. Khriplovich, talk at the XVIII International Conference on High Energy Physics, Tbilisi, USSR, July 1976.Google Scholar
  41. 16.
    See T.P. Cheng’s talk for a discussion of pey and related questions.Google Scholar
  42. 17.
    E. Eichten and K. Gottfried, Cornell Preprint (1976).Google Scholar
  43. 18.
    R. Shankar, “Determination of the Quark Gluon Coupling Constant”, Phys. Rev. D, to be published February 1977.Google Scholar
  44. 19.
    A. De Rujula, H. Georgi, and H.D. Politzer, “Demythification of Electroproduction Local Duality and Precocious Scaling”, HUTP-76/A155, Annals of Phys., to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Howard Georgi
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations