Applications of Sn119m Mössbauer Spectroscopy to Chemical Problems

  • J. J. Zuckerman


The first observation of the Mössbauer effect in Sn119 [1] was qickly followed by the application of Sn.119m Mössbauer spectroscopy to a chemical problem [2]. There are now almost two hundred research papers and notes which comprise the literature of Sn119m Mössbauer spectroscopy. The great majority of these describe applications to chemical problems. Spectroscopic methods are inherently capable of yielding three general types of information(1)identity of a substance(2) composition of a physical mixture, and (3) information concerning the structure and bonding of atoms in molecule. The first of these represents an application of the generally accepted principle that “identical species behave identically” and the second on the premise that physical mixing does not alter chemical nature two these two are analytical uses. It is the third type of information which the chemist is most anxious to have. In most cases it is impossible to derive exact theoretical predictions concerning the change of measurable parameters from first principles, and the practicingchemist must, therefore, rely on a large body of analogy upon which to build his hypoteses. In the case of a technique only recently introduced, to test a wide variety of substances in order to find the empirical correlations which relate the known chemical behavior to changes in the observable parameters. This process has already been seen occur in infrared and nuclear magnetic resonance spectroscopy. The present state of the science of Sn119m Mössbauer spectroscopy is reviewed.


Isomer Shift Quadrupole Splitting Nuclear Quadrupole Resonance Absorber Atom Intermolecular Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Barloutard, E. Cotton, J.-L. Picou, and J. Quidort, Compt. Rend.. 250: 319 (1960).Google Scholar
  2. 2.
    N. N. Delyagin, V. S. Shpinel, V. A. Bryukhtar and Zvenglinski, Soviet Physics-JET? 12: 159 (1960).Google Scholar
  3. 3.
    H. J. Lipkin, personal communication quoted in H. Fraue.n.felder, The Mössbauer Effect (W. A. Benjamin, Inc., New Yor1 p. 13.Google Scholar
  4. 4.
    V. I. Goldanskii, private communication, 1966.Google Scholar
  5. 5.
    D. L. Smith and J. J. Zuckerman,.1. Inorg. Nucl.Google Scholar
  6. 6.
    N. N. Shmulovskii, N. Salakhutdinov, and A. u.-)Akad. Nauk UZSSR, Ser. Tekh, Nauk 8:29 (1964); Chem.Google Scholar
  7. 7.
    A. A. Kalmakov and N. Salakhutdinov, fw. Vyr T T r ini, Tsvetn. Met, 8:158 (1965); Chem. Abstra. 64:3107 (_Google Scholar
  8. 8.
    E. W. Randall and J. J. Zuckerman, Scientific Amer ran le, r ress. 9, T. Gela, J. Chem, Phys, 24: 1009 (1956).Google Scholar
  9. 10.
    V. S. Shpinel, V. A. Bryukhanov, and N. N. Delyagin, Soviet. Physics-JETP 14: 1256 (1962).Google Scholar
  10. 11.
    V. 1. Goldanskii, V. Ya. Rochev, and V. V. Khrapov, Doklady Akad, Nauk SS.SR 156: 909 (1964).Google Scholar
  11. 12.
    W. P. Neumann, Angew, Chem. 75: 225 (1963).Google Scholar
  12. D. H. Olsen and R. E. Rundle, Inorg. Chem. 2:310 763).Google Scholar
  13. 14.
    A. Yu Aleksandrov, V. I. Bregadze, V. I. Gold L. L 7Google Scholar
  14. O. Yu. Okhiobystin, and V. V. Khrapov, Doklady ii “vek S (1965).Google Scholar
  15. 15.
    J. Lees and P. A. Flinn, Phys. Letters 19:186 (1965).Google Scholar
  16. 16.
    A. J. Bearden, H. S. Marsh, and J. J. Zuckerman, Inorg. Chem. 5:1260 (1,u6).Google Scholar
  17. 17.
    J. J. Zuckerman, J. Chem. Soc. 1962: 1322.Google Scholar
  18. 18.
    I. P. Suzdalev, E. F. Makarov, I. Ya. Garzanov, and Kinetics Catalysis (USSR) 6: 1002 (1965).Google Scholar
  19. 19.
    E. B. Fleischer and J. H. Wang, J. Am. Chem. Soc.Google Scholar
  20. 20.
    B. F. Burnham and J. J. Zuckerman, Abstr, 15Ist, Ntisburgh, March, 1966.Google Scholar
  21. 21.
    W. C. Fernelius, Chemical Architecture (Interscience, Nev -ork, 1948 ), p. 96.Google Scholar
  22. 22.
    W. E. Bennett, personal communication, 1966.Google Scholar
  23. 23.
    R. H. Herber, H. A. Stöckler, and W. T. Reichle, J. Chem. Phys. 42: 2447 (1965).CrossRefGoogle Scholar
  24. 24.
    W. T. Reichle, Inorg. Chem. 5: 37 (1966).CrossRefGoogle Scholar
  25. 25.
    A. Yu. Aleksandrov, K. P. Mitrofanov, O. Yu. C,,ï tin, L, S, Polak, and V. S. Shpinel, Doklady Akad. Nuuk. SSSR 153:Google Scholar
  26. 26.
    V. L Goldanskii, private communication, quoted inGoogle Scholar
  27. 27.
    V. 1. Goldanskii, E. F. Makarov, R. A. Stukan, T. Trukhtanov, and V. V. Khrapov Doklady Akad. Nazi:::Google Scholar
  28. 28.
    R. H. Herber, Mössbauer Effect Methodology Vol. 1, Ed. by (Plenum Press, New York, 1965 ), p. 9.Google Scholar
  29. 29.
    V. A. Bryukhanov, N. N. Delyagin, A. A. Opalenko, and V. Physics-JETP 16: 310 (1963).Google Scholar
  30. 30.
    V. A. Bukarev, Soviet Physics-JETP 17: 579 (1963).Google Scholar
  31. 31.
    V. 1. Goldanskii, E. F. Makarov, R. A. Stukan, V. V. Khrapov, Doklady Akad. Nauk. SSSR 151:5’Google Scholar
  32. 32.
    L. M. Epstein and D. K. Straub, Inorg. Chem. 4: 1551Google Scholar
  33. 33.
    H. J. Emeléus and J. J. Zuckerman, J. Organornetal Clot; Google Scholar
  34. 34.
    R. C. Poiler. Proc. Chem. Soc. 1962: 312.Google Scholar
  35. 35.
    H. S. Marsh, S. H. Sage, and J. J. Zuckerman, unpublished results.Google Scholar
  36. 36.
    C. Hohenemser, Phys. Rev. 139: A185 (1965).CrossRefGoogle Scholar
  37. 37.
    H. A. Stäckler and H. Sano, Noel. Instr. Meth. 44: 103 (1966).CrossRefGoogle Scholar
  38. 38.
    A. Yu. Aleksandrov, O. Yu. Okhlobystin, L. S. P3 1003C °, and V, S. Shpinel, Dokladv Akad. Plank. SSSR 157: 768 (1964).Google Scholar
  39. 39.
    R. H. Herber and G. I. Parisi, Inorg. Chem. 5: 769Google Scholar
  40. 40.
    T. C. Gibb and N. N. Greenwood, J. Chem. Soc. IGoogle Scholar
  41. 41.
    J. J. Zuckerman, unpublished results.Google Scholar
  42. 42.
    H. A. Stäckler, H. Sano, and R. H. Herber, J. Che…. lays. 45:1182 (1966).Google Scholar
  43. 43.
    N. N. Greenwood, Advisory Panel on the Miissbauer Effect,international Atomic Energy Agency, Vienna, May, 1965, in press.Google Scholar
  44. 44.
    E. A. V. Ebsworth, Volatile Silicon Compounds ( Pergar n Press, London, 1963 ).Google Scholar
  45. 45.
    C. H. Townes and B. P. Dailey, J. Chem. Phys. 17:78 (1).Google Scholar
  46. 46.
    D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orge;, E d L. E. Sutton. J. Chem, Soc. 1954: 332, 354.Google Scholar
  47. 47.
    E. W. Randall and J. J. Zuckerman, Chem. Communs. 1996:732, and references therein.Google Scholar
  48. 48.
    M. Cordey-Hayes, J. Inorg. Noel. Chem. 26: 915 (1964).Google Scholar
  49. 49.
    L R. Beattie, Quart. Revs. 17: 383 (1963).CrossRefGoogle Scholar
  50. 50.
    C. M. Silcox Yoder and J. J. Zuckerman, Inorg. Chem. 6: 163 (1967).CrossRefGoogle Scholar
  51. 51.
    P. Brand and H. Sackmann, Acta Crist. 16:446 (1963)Google Scholar
  52. 52.
    A. L. Schawlow, J. Chem. Phvs. 22: 1211 (1954).CrossRefGoogle Scholar
  53. 53.
    T. P. Das and E. L. Hahn, Solid State Phys. Suppl. 1: 13 (1958).Google Scholar
  54. 54.
    O. 1. Surnbaev and A. F. Mezentsev. Soviet Physics-Jf TP 21: 295 (1965).Google Scholar
  55. 55.
    O. 1. Surnbaev, A. F. Mezentsev, V. I. Marushenko, E. V. Petrovich, and A. S. Rylnikov, Soviet Physics-JETP 23: 572 (1966).Google Scholar
  56. 56.
    C. Nordling, Ark. Errs. 15: 241 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • J. J. Zuckerman
    • 1
  1. 1.Baker LaboratoryCornell UniversityIthacaUSA

Personalised recommendations