Mössbauer Spectroscopy of the 29.4 keV Gamma Ray of K40 from the Reaction K39 (n, γ) K40

  • D. W. Hafemeister
  • E. Brooks Shera
Conference paper


Because the levels of K40 are not populated by beta decay, it is necessary to use a nuclear reaction to produce the 29.4 keV ground state transition in K40. By passing a beam of thermal neutrons through the cryostat containing source and absorber, we have been able to utilize the K39 (n, γ) K40 reaction for the Mössbauer spectroscopy of K40. A thermal neutron beam does not cause target heating and the (n, γ) reaction method can be used for low temperature Mössbauer studies of both insulators and metals.


Thermal Neutron Spin Density Wave Absorber Thickness Thermal Neutron Capture Recoilless Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Seitz and J. S. Koehler, Solid State Phys. 2: 305 (1956);Google Scholar
  2. A. N. Goland, Ann. Rev. Nucl. Sei. 12: 243 (1962).CrossRefGoogle Scholar
  3. 2.
    C. Erginsoy, G. H. Vineyard, and A. Shimizui, Phys. Rev. 139: A118 (1965)CrossRefGoogle Scholar
  4. 3.
    D. Seyboth and F. E. Obenshain, Phys. Rev. Letters 14: 954 (1965);CrossRefGoogle Scholar
  5. P. W. Keaton, Jr., E. T. Ritter, and J. C. Walker, Phys. Rev. Letters 14: 957 (1965).CrossRefGoogle Scholar
  6. 4.
    E. T. Ritter, P. W. Keaton, Jr., Y. K. Lee, R. R. Stevens, Jr., and J. C. Phys. Rev. 154: 287 (1967).CrossRefGoogle Scholar
  7. 5.
    D. W. Hafemeister and E. B. Shera, Phys. Rev. Letters 14: 593 (1965).CrossRefGoogle Scholar
  8. 6.
    J. Fink and P. Kienle, Physics Letters 17: 326 (1965).CrossRefGoogle Scholar
  9. 7.
    R. B. Day, Phys. Rev: 102: 767 (1956).CrossRefGoogle Scholar
  10. 8.
    F. E. Obenshain and W. Berger, Bull. Am. Phys. Soc. 12: 24 (1967).Google Scholar
  11. 9.
    D. W. Hafemeister and E. B. Shera, Nucl. Instr. Methods 41: 133 (1966).CrossRefGoogle Scholar
  12. 10.
    G. Lang, Nucl. Instr. Methods 24: 425 (1963).CrossRefGoogle Scholar
  13. 11.
    F. J. Lynch and R. E. Holland, Phys. Rev. 114: 825 (1959).CrossRefGoogle Scholar
  14. 12.
    S. L. Ruby and R. E. Holland, Phys. Rev. Letters 14: 591 (1965).CrossRefGoogle Scholar
  15. 13.
    W. H. Flygare and D. W. Hafemeister, J. Chem. Phys. 43: 789 (1965).CrossRefGoogle Scholar
  16. 14.
    D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A193: 299 (1948).CrossRefGoogle Scholar
  17. 15.
    J. Calloway, Solid State Phys. 7:144 (1958)Google Scholar
  18. J. Calloway, Energy Band Theory ( Academic Press, New York, 1964 ), p. 155.Google Scholar
  19. 16.
    D. A. Shirley, Rev. Mod. Phys. 36: 339 (1964).CrossRefGoogle Scholar
  20. 17.
    S. Goldstein and I. Talmi, Phys. Rev. 105: 995 (1957).CrossRefGoogle Scholar
  21. 18.
    J. Eisinger and V. J. Jacarrino, Rev. Mod. Phys. 30: 528 (1958).CrossRefGoogle Scholar
  22. 19.
    M. Emshwiller, E. L. Hahn, and D. Kaplan, Phys. Rev. 118: 414 (1960);CrossRefGoogle Scholar
  23. S. R. Hartmann and E. L. Hahn, Phys. Rev. 128: 2042 (1960).CrossRefGoogle Scholar
  24. 20.
    A. W. Overhauser, Phys. Rev. Letters 13: 190 (1964).CrossRefGoogle Scholar
  25. 21.
    A. W. Overhauser, Phys. Rev. 128: 1437 (1962).CrossRefGoogle Scholar
  26. 22.
    M. H. El Naby, Z. Physik 174: 269 (1963).CrossRefGoogle Scholar
  27. 23.
    A. J. F. Boyle and G. J. Perlow, Phys. Rev. 149:165 (1966).Google Scholar
  28. 24.
    D. R. Gustafson and G. T. Barnes, Phys. Rev. Letters 18: 3 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • D. W. Hafemeister
    • 1
    • 2
  • E. Brooks Shera
    • 2
  1. 1.Department of PhysicsCarnegie Institute of TechnologyPittsburghUSA
  2. 2.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations