Measurements by Scattering Techniques, II

  • P. Debrunner


In this paper the application of a backscattering geometry for the measurement of Mössbauer transitions with very small recoilless fractions is discussed. A system based on this geometry is described [1], which has been used successfully for the measurement of single Mössbauer lines with recoilless fractions as small as 0.5% [2]. The high sensitivity obtained with this system is particularly useful for the study of Mössbauer transitions in the energy range of 100 keV and above, where transmission experiments become more and more difficult.


Solid Angle Compton Scattering Large Solid Angle Recoilless Fraction Compton Background 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Morrison, M. Atac, P. Debrunner, and H. Frauenfelder, Phys. Letters 12: 35 (1964).CrossRefGoogle Scholar
  2. 2.
    R. J. Morrison, Ph. D. Thesis, Department of Physics, University of Illinois, September 1964.Google Scholar
  3. 3.
    V. P. Alfimenkov et al., Soviet Phys. JETP 15: 713 (1962).Google Scholar
  4. 4.
    W. H. Wiedemann et al., Z. Angew. Phys. I5: 7 (1963).Google Scholar
  5. 5.
    A. Bussiëre de Nercy et al., Compt. Rend. 250: 1031 (1960).Google Scholar
  6. 6.
    H. Frauenfelder, The Mössbauer Effect (W. A Benjamin, Inc., New York, 1962 ).Google Scholar
  7. 7.
    F. Seitz, Modern Theory of Solids ( McGraw-Hill Publishing Co., New York, 1940 ).Google Scholar
  8. 8.
    D. W. Hafemeister, G. DePasquali, and H. deWaard, Phys. Rev. 135B: 1089 (1964).Google Scholar
  9. 9.
    U. Atzmony, A. Mualem, and S. Ofer, Phys. Rev. 136B: 1237 (1964).CrossRefGoogle Scholar
  10. 10.
    R. L. Mössbauer and W. H. Wiedemann, Z. Phyzik 159: 33 (1960).CrossRefGoogle Scholar
  11. 11.
    R. L. Mössbauer, Z. Naturforsch. 14a: 211 (1959).Google Scholar
  12. 12.
    W. M. Visscher, Ann. Phys. 9: 194 (1960).CrossRefGoogle Scholar
  13. 13.
    F.R. Metzger, Progr, Nucl. Phys. 7: 54 (1959).Google Scholar
  14. 14.
    P. H. Moon, Proc. Phys. Soc. 63A: 1189 (1950).Google Scholar
  15. 15.
    P. Debrunner and R. J. Morrison, Rev. Sci. Instr. 36: 145 (1965).CrossRefGoogle Scholar
  16. 16.
    E. Kankeleit, Rev. Sci. Instr. 35: 194 (1964).CrossRefGoogle Scholar
  17. 17.
    L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25: 729 (1953).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1965

Authors and Affiliations

  • P. Debrunner
    • 1
  1. 1.Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations