Application of the Mössbauer Effect to Biological Systems

  • U. Gonser
  • R. W. Grant


The exploitation of the Mössbauer effect in the fields of physics and chemistry [1–4] has been remarkable in the seven years since its discovery [5,6]. The applicability of this tool can be extended to the field of biophysics, although as yet the potential of the Mössbauer effect for biological studies has not been fully realized. Comparatively few papers have been published concerning the investigation of biological molecules and related compounds. In most cases the Mössbauer spectra of these molecules are treated somewhat as a curiosity and very few detailed interpretations of the data are made. In this paper we will try to point out both the usefulness and limitations of the Mössbauer effect for biological studies and, if possible, give appropriate examples of measurements which have been made on biological materials. The authors apologize for drawing rather extensively on their own work in this connection; however, the very limited amount of published work in this field makes this unavoidable. We believe the included reference list is complete with respect to published Mössbauer investigations of a biological nature.


Iron Atom Isomeric Shift Electric Field Gradient Parent Nucleus Iron Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the First Conference on the Mössbauer Effect, University of Illinois, Urbana, Illinois, 1960, edited by H. Frauenfelder and H. Lustig.Google Scholar
  2. 2.
    Proceedings of the Second International Conference on the Mössbauer Effect, Saclay, France, 1961, edited by D. M. T. Compton and A. H. Schoen.Google Scholar
  3. 3.
    Proceedings of the Third International Conference on the Mössbauer Effect, Cornell University, Ithaca, New York, 1963, edited by A. J. Bearden. Rev. Mod. Phys. 36:333 (1964).Google Scholar
  4. 4.
    A. H. Muir, Jr., and K. J. Ando, Mössbauer Effect Data Index, North American Aviation Science Center, Thousand Oaks, California.Google Scholar
  5. 5.
    R. L. Mössbauer, Z. Physik 151: 124 (1958).CrossRefGoogle Scholar
  6. 6.
    R. L. Mössbauer, Naturw. 45: 538 (1958).CrossRefGoogle Scholar
  7. 7.
    V. I. Gol’danskii, The Mössbauer Effect and Its Applications in Chemistry ( Consultants Bureau, New York, 1964 ).CrossRefGoogle Scholar
  8. 8.
    W. Kerler, W. Neuwirth, and E. Fluck, Z. Physik 175: 200 (1963).CrossRefGoogle Scholar
  9. 9.
    P.P. Craig and N. Sutin, Phys. Rev. Letters 11: 460 (1963).CrossRefGoogle Scholar
  10. 10.
    Pham Zuy Hien, V. G. Shapiro, and V. S. Shpinei’, Zhur. Eksperim. i Tear. Fix. 42: 703 (1962).Google Scholar
  11. 11.
    N. Shikazong, T. Shoji, H. Takekoshi, and P. K. Tseng, J. Phys. Soc. Japan 17: 1205 (1962).CrossRefGoogle Scholar
  12. 12.
    F. De S. Barros, N. Ivantchev, S. Jha, and K. R. Reddy, Phys. Letters 13: 142 (1964).CrossRefGoogle Scholar
  13. 13.
    G. J. Perlow and S. L. Ruby, Phys. Letters 13: 198 (1964).CrossRefGoogle Scholar
  14. 14.
    S. Jha, R. Segnan, and G. Lang, Phys. Rev. 128: 1160 (1962).CrossRefGoogle Scholar
  15. 15.
    G. K. Wertheim, Phys. Rev. 124: 764 (1961).CrossRefGoogle Scholar
  16. 16.
    A. V. Ablov, G. N. Belozerskii, V. I. Gol’danskii, E. F. Makarov, V.A. Trukhtanov,and V. V. Khrapov, Proc. Acad. Sci. USSR, Phys. Chem. Sec. (English transi.) 152: 712 (1963).Google Scholar
  17. 17.
    A. V. Abiov, I. B. Bersuker, and V.I. Goldanskii, Proc. Acad. Sd. USSR, Phys. Chem. Sec. (English transi.) 152: 934 (1963).Google Scholar
  18. 18.
    A. Cantarow and B. Schepartz, Biochemistry (W. B. Saunders Co., Philadelphia and London, 1962 ).Google Scholar
  19. 19.
    U. Ganser, R. W. Grant, and J. Kregzde, Science 143: 680 (1964).CrossRefGoogle Scholar
  20. 20.
    W. Karger, Ber. Bunsenges. 68: 793 (1964).Google Scholar
  21. 21.
    U. Ganser, R. W. Grant, and J. Kregzde, Appl. Phys. Letters 3: 189 (1963).CrossRefGoogle Scholar
  22. 22.
    U. Gonser and R. W. Grant (to be published).Google Scholar
  23. 23.
    J. E. Maling and M. Weissbluth, Electronic Aspects of Biochemistry, edited by B. Pullman ( Academic Press, Inc., New York, 1964 ), p. 93.Google Scholar
  24. 24.
    R.G. Shulman and G. K. Wertheim, Rev. Mod. Phys. 36: 459 (1964).Google Scholar
  25. 25.
    P. G. Reizenstein and J. B. Swan, Intern. Biophys, Congr. 1: 147 (1961).Google Scholar
  26. 26.
    U. Gonser, J. Phys. Chem. 66: 564 (1962).CrossRefGoogle Scholar
  27. 27.
    L. M. Epstein, J. Chem. Phys. 36: 2731 (1962).CrossRefGoogle Scholar
  28. 28.
    H. H. Wickman, M.P. Klein, and D. A. Shirley, Bull. Am. Phys. Soc. 10: 57 (1965).Google Scholar
  29. 29.
    H. H. Wickman, Ph.D. Thesis, UCRL 11538 (1964).Google Scholar
  30. 30.
    D. C. Blomstrom, E. Knight, Jr., W.D. Phillips, and J. F. Weiher, Proc. Natl. Acad. Sci. U.S. 51: 1085 (1964).Google Scholar
  31. 31.
    W. L. Pillinger and J. A. Stone, Du Pont Report No. 878 (1964).Google Scholar
  32. 32.
    J. C. Kendrew, Science 139: 1259 (1963).CrossRefGoogle Scholar
  33. 33.
    H. Frauenfelder, The Mössbauer Effect (W. A. Benjamin, Inc., New York, 1962 ).Google Scholar
  34. 34.
    A. J. F. Boyle and H. E. Hall, Rep. Progr. Phys. 25: 441 (1962).CrossRefGoogle Scholar
  35. 35.
    G. K. Wertheim, Mössbauer Effect. Principles and Applications (Academic Press, Inc., New York, 1964 ).Google Scholar
  36. 36.
    L. R. Walker, G.K. Wertheim, and V. Jaccarino, Phys. Rev. Letters 6: 98 (1961).CrossRefGoogle Scholar
  37. 37.
    P. George, J. Biochem. 54:267 (1953); 55: 220 (1953).Google Scholar
  38. 38.
    R. Ingalls, Phys. Rev. 133: 787 (1964).CrossRefGoogle Scholar
  39. 39.
    G. Burns, Phys. Rev. 124: 524 (1961).CrossRefGoogle Scholar
  40. 40.
    R. L. Collins and R. Pettit, J. Am. Chem. Soc. 85: 2332 (1963).CrossRefGoogle Scholar
  41. 41.
    P. H, Remy and H. Pollack, J. Appl. Phys. 36: 860 (1965).Google Scholar
  42. 42.
    L. Pauling and C.D. Coryell, Proc. Natl. Acad. Sci. U.S. 22: 210 (1936).Google Scholar
  43. 43.
    B. Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16: 108 (1963).CrossRefGoogle Scholar
  44. 44.
    L.G. Lang, S. DeBenedetti, and R. L. Ingalls, J. Phys. Soc. Japan 17:131 Suppl. B-1 (1962).Google Scholar
  45. 45.
    R. Lembert and J. W. Legge, He matin Compounds and Bile Pigments [J. Wiley & Sons, Inc, ( Interscience ), New York, 1949 ), p. 168.Google Scholar
  46. 46.
    G.K. Wertheim and J. P. Remeika, Phys. Letters 10: 14 (1964).CrossRefGoogle Scholar
  47. 47.
    M. Blume, Phys. Rev. Letters 14: 96 (1965).CrossRefGoogle Scholar
  48. 48.
    S. Margulies and J.R. Ehrman, Nucl. Instr. Methods 12: 131 (1961).CrossRefGoogle Scholar
  49. 49.
    V. 1. Gol’danskii, E. F. Makarov, and V. V. Khrapov, Phys. Letters 3: 344 (1963).Google Scholar
  50. 50.
    P. A. Flinn, S. L. Ruby, and W. L. Kehl, Science 143: 1434 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1965

Authors and Affiliations

  • U. Gonser
    • 1
  • R. W. Grant
    • 1
  1. 1.North American Aviation Science CenterThousand OaksUSA

Personalised recommendations