Advertisement

Cryostats for Mössbauer Experiments

  • Michael Kalvius

Abstract

There may be several reasons for needing low temperatures in a Mössbauer experiment. First, the fraction f of gamma rays, emitted or absorbed without recoil energy loss, increases with decreasing temperatures and actually only a few of the possible transitions (see, for instance, Boyle and Hall [1]) will show an appreciable Mössbauer effect at room temperatures. Second, the sample material under investigation may show characteristic properties, for example, magnetic ordering (see Wertheim [2]) only at low temperatures. Third, many measurements, such as a precise determination of the isomer shift, require that source and absorber be kept at a constant and readily reproducible temperature. This requirement is comparatively easily achieved by keeping the sample at the boiling point of a liquefied gas, usually liquid nitrogen (see, for example Preston et al. [3]).

Keywords

Liquid Helium Stainless Steel Tube Leaf Spring Radiation Shield Helium Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. F. Boyle and H. E. Hail, “The Mössbauer Effect,”Rept. Prog. Phys. 25: 441–524 (1962).CrossRefGoogle Scholar
  2. 2.
    G. K. Wertheim, J. Appl. Phys., Suppl. 32: 1108 (1961).CrossRefGoogle Scholar
  3. 3.
    R.S. Preston, S.S. Hanna, and J. Heberle, Phys. Rev. 128: 2207 (1962).CrossRefGoogle Scholar
  4. 4.
    J. H. Bell, Cryogenic Engineering (Prentice Hall, Englewood Cliffs, N. J., 1963 ), p. 354.Google Scholar
  5. 5.
    G. J. Perlow, Rev. Mod. Phys. 36: 353 (1964).CrossRefGoogle Scholar
  6. 6.
    P. Craig, Mössbauer Effect Methodology, this volume, p. 135.Google Scholar
  7. 7.
    M. Kalvius, Phys, Rev. 137: B1441 (1965).CrossRefGoogle Scholar
  8. 8.
    G. R. White, Experimental Techniques in Low Temperature Physics (Clarendon Press, Oxford, 1959), p. 198ff.Google Scholar
  9. 9.
    R. Booth and C. E. Violet, Nucl. Methods 25: 1 (1963).CrossRefGoogle Scholar
  10. 10.
    C. W. Kocher, Rev. Sci. Instr. 36: 1018 (1965).CrossRefGoogle Scholar
  11. 11.
    R. L. Cohen, P. B. McMullin, and G. K. Wertheim, Rev. Sci. Instr. 34: 671 (1963).CrossRefGoogle Scholar
  12. 12.
    E. Kankeleit, Rev. Sci. Instr. 35:194 (1964), and Mössbauer Effect Methodology, this volume, p. 47.Google Scholar
  13. 13.
    L. D. Roberts and J. O. Thomson, Phys. Rev. 129: 664 (1963).CrossRefGoogle Scholar
  14. 14.
    M. McClontock, Cryogenics (Reinhold Publishing Co., New York, 1964), p. 57ff.Google Scholar
  15. 15.
    R. B. Scott, Cryogenic Engineering (D. Van Nostrand Co., Inc., New York, 1959 ), p. 349.Google Scholar
  16. 16.
    R. Berman and D. J. Huntley, Cryogenics 3: 70 (1963).CrossRefGoogle Scholar
  17. R, Berman, J. C. F. Brock, and D. J. Huntley, Cryogenics 4: 233Google Scholar
  18. R. L. Rosenbaum, R. R. Oder, R. B. Goldener, Cryogenics 4: 333 (1964).CrossRefGoogle Scholar
  19. 17.
    C. R. Barber, “Resistance Thermometers for Low Temperatures”, Progr. Cryogenics 2: 147–171 (1960).Google Scholar
  20. 18.
    M. Kalvius, Bull. Am. Phys. Soc. 9, 634 (1964).Google Scholar
  21. 19.
    D. W. Hafemeister, G. DePasqualiandH. deWaard, Phys. Rev. 135, B1099 (1964).CrossRefGoogle Scholar
  22. 20.
    N. Blum, Mössbauer Effect Methodology, this volume, p. 147.Google Scholar
  23. 21.
    R. Bercaw and M. Kalvius (unpublished).Google Scholar
  24. 22.
    J. K. Major, Nucl. Phys. 33:323 (1962), and Mössbauer Effect Methodology, this volume, p. 89.Google Scholar
  25. 23.
    A.H. Muir, E. Kankeleit, and F. Boehm, Rev. Mod. Phys. 36: 469 (1964).CrossRefGoogle Scholar
  26. 24.
    B. W. Murray, M. S. Thesis, Department of Physics, Western Reserve University, Cleveland, Ohio (unpublished).Google Scholar
  27. 25.
    W. Wiedemann, Kommission fur Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften, Nebenstelle Reaktorstation, Garching bei München, West Germany.Google Scholar
  28. 26.
    W. Wiedemann, W. A. Mundt, and D. Kullman, Cryogenics 5: 94 (1965).CrossRefGoogle Scholar
  29. 27.
    M. Kalvius, P. Kienle, H. Eicher, W. Wiedemann, and C. Schuler, Z. Physik 172: 231 (1962).CrossRefGoogle Scholar
  30. 28.
    H. Dobler, G. Petrich, S. Hitler, P. Kienle, W. Wiedemann, and H. Eicher, Phys, Letters 10: 319 (1964).CrossRefGoogle Scholar
  31. 29.
    C. F. Morrison, “Generalized Instrumentation for Research and Teaching,” Washington State University, Pullman, Washington.Google Scholar

Copyright information

© Springer Science+Business Media New York 1965

Authors and Affiliations

  • Michael Kalvius
    • 1
  1. 1.Western Reserve UniversityClevelandUSA

Personalised recommendations