Effects of Environment on the Electronic Configuration in Intermediate Valent Rare Earth Systems

  • Thomas Penney
Part of the NATO ASI Series book series (NSSB, volume 117)


In the intermediate valence problem one must consider highly correlated localized f electrons in the presence of delocalized d and s electrons (denoted d for simplicity). Two configurations, fndm and fn−1dm+1, have comparable energies and must be considered. It is possible that a completely electronic theory, such as the Anderson/Kondo impurity/lattice models, may contain the essence of coupling these states and will describe the magnetic susceptibility and specific heat. However, these configurations have different sizes and bonding properties. The proper electronic configuration will depend and, conversely, be a major influence on the structure. In this paper we will discuss the relationship of valence to volume, homogeneous valence transitions, surface valence transitions, local valence transitions, and the existence of gaps in the electronic density of states.


Rare Earth Lattice Constant Bulk Modulus Electronic Configuration Phonon Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Friedel in the Phys of Metals 1, Electrons, J.M. Ziman ed., Cambridge University Press, 1969, p. 340.Google Scholar
  2. 2.
    A.R. Williams, C.D. Gelatt Jr., J.F. Janak, in Theory of Alloy Phase Formation, L.H. Bennett ed., Proc. 108th AIME Annual Meeting New Orleans, 1979.Google Scholar
  3. 3.
    L. Pauling, The Nature of the Chemical Bond, Cornell, 1960.Google Scholar
  4. 4.
    A. Iandelli in Rare Earth Research, E.V. Kleber ed., MacMillan, New York (1961) p. 135.Google Scholar
  5. 5.
    D.H. Templeton and C.H. Dauben, J. Am. Chem. Soc. 76, 5237 (1954).CrossRefGoogle Scholar
  6. 6.
    A Iandelli and A. Palenzona in Handbook of the Physics and Chemistry of Rare Earths, K.A. Gschneidner Jr., and L. Eyring, North Holland (1979) Vol. 2, p.l.Google Scholar
  7. 7.
    G. Kaindl, B. Reihl, D.E. Eastman, R.A. Pollak,N.Martensson, B. Barbara, T. Penney and T.S. Plaskett, Sol. State Comm. 41, 157 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    K.R. Bauchspiess, W. Boksch, E. Holland-Moritz, H. Launois, R. Pott and D. Wohlleben, Valence Fluctuations in Solids, L.M. Falicov, W. Hanke, M.B. Maple eds., North-Holland (1981) p. 417 and private communication.Google Scholar
  9. 9.
    A. Jayaraman, Handbook on the Physics and Chemistry of Rare Earths, op cit, Vol. 2, p. 575 and A. Jayaraman, A.K. Singh, A. Chatterjee and S. Usha Devi, Phys. Rev. B9, 2513 (1974).Google Scholar
  10. 10.
    M.B. Maple and D.K. Wohlleben, Phys. Rev. Lett. 27, 511 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    B.Batlogg, E. Kaldis, A. Schlegel, P.Wachter, Phys.Rev. 14B, 5503 (1976).Google Scholar
  12. 12.
    L.L. Hirst, J. Phys. Chem. Solids 35, 1285 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    C.M. Varna and V. Heine, Phys. Rev. B11, 4763 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    T. Penney and R.L. Melcher, J. Physique 37, Colloq C4–275 (1976).Google Scholar
  15. 15.
    L.J. Tao and F. Holtzberg, Phys. Rev. B1l, 3842 (1975).Google Scholar
  16. 16.
    T. Penney and F. Holtzberg, Phys. Rev. Lett. 34, 322 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Melcher, G. Guntherodt, T. Penney and F. Holtzberg, 1975 Ultrasonics Symposium Proceedings, IEEE Cat. #75 CHO 994–4811, p. 16.Google Scholar
  18. 18.
    T. Penney, R.L. Melcher, F. Holtzberg and G. Gentherodt, AIP Conf. Proc. 29, 392 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    B. luthi in Dynamical Properties of Solids, G.K. Horton and A.A. Maradudin eds., North Holland (1980), Vol. 3, p. 245. B. Luthi, AIP Conf. Proc. 34, 7 (1976).Google Scholar
  20. 20.
    See chapter by P. Fulde.Google Scholar
  21. 21.
    R. Keller, C. Guntherodt, W.B. Holzapfel, M. Dietrich and F. Holtzberg, Sol. State Comm. 29, 753 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    A. Jayaraman, B. Batlogg, R.G. Maines, H. Bach, Phys. Rev. B26, 3347 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    J. Roehler, GKrill, J.P. Kappler, M.F. Ravet and D. Wohlleben in Valence Instabilities, P. Wachter and H.Boppart eds., North Holland (1982), p. 215.Google Scholar
  24. 24.
    J.M. Lawrence, M.C. Croft and R.D. Parks, Phys. Rev. Lett. 35, 289 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    B. Batloggs, E. Kaldis, H.R. Ott, Physics Letts 62A, 220 (1977).Google Scholar
  26. 26.
    H. Boppart, A. Treindl, P. Wachter in Valence Instabilities (1982), op cit. p. 103.Google Scholar
  27. 27.
    H. Boppart, W. Rehwald, E. Kaldis and P. Wachter, Valence Instabilities (1982), op cit, p. 81.Google Scholar
  28. 28.
    H. Boppart, Thesis; see also chapter by P. Wachter and H. Boppart.Google Scholar
  29. 29.
    H.A. Mook, R.M. Nicklow, T. Penney, F. Holtzberg and M.W. Shafer, Phys. Rev. B18, 2925 (1978). H.A. Mook and R.M. Nicklow, Phys. Rev. B20, 1656 (1979).Google Scholar
  30. 30.
    H.A. Mook, D.B. McWhan, F. Holtzberg, Phys. Rev. B25, 4321 (1982).Google Scholar
  31. 31.
    N. Wakabayashi, Phys. Rev. B22, 5833 (1980).Google Scholar
  32. 32.
    H. Bilz, G. Guntherodt, W. Klepmann and W. Kress, Phys. Rev. Lett. 43, 1998 (1979).Google Scholar
  33. 33.
    P. Entel, N. Grewe, M. Sietz, K. Kawalski, Phys. Rev. Lett. 43, 2002 (1979).Google Scholar
  34. 34.
    L. Pintschovius, E. Holland-Moritz, D. Wohlleben, S. Stahr, J. Liebertz, Sol. State Comm. 34, 953 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    T., Penney, B. Barbara, T.S. Plaskett, H.E. King, Jr. and S.J. LaPlaca, Sol. State Comm. 44, 1199 (1982).Google Scholar
  36. 36.
    M.C. Croft and A. Jayaraman, Sol. State Comm. 29, 9 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    F.F. Voronov, V.A. Goncharova and O.V. Stal’garova, Sov. Phys. JETP 49, 687 (1979).ADSGoogle Scholar
  38. 38.
    H. Wehr, K. Knorr and R. Feile, Sol. State Comm. 40, 507 (1981).ADSCrossRefGoogle Scholar
  39. 39.
    G.K. Wertheim, J.H. Wernick and G. Crecelius, Phys. Rev. B18, 875 (1978).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Baer and J.K. Lang, J. Appl. Phys. 50, 7485 (1979).ADSCrossRefGoogle Scholar
  41. 41.
    G.K. Wertheim and G. Crecelius, Phys. Rev. Lett. 40, 813 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    W. Gudat, M. Campagna, R. Rosei, J.H. Weaver, W. Eberhardt, F. Hulliger and E. Kaldis, J. Appl. Phys. 52, 2123 (1981).ADSCrossRefGoogle Scholar
  43. 43.
    J.W. Allen, L.I. Johansson, I. Lindau and S.B. Hagstrom, Phys. Rev. B21, 1335 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    B. Reihl, G. Kaindl, F. Holtzberg, R.A. Pollak, G. Hollinger, N. Martensson, in Valence Instabilities (1982), op cit, p. 287.Google Scholar
  45. 45.
    N. Martensson, B. Reihl, R. A. Pollak, F. Holtzberg and G. Kaindl, Phys. Rev. B25, 6522 (1982).ADSCrossRefGoogle Scholar
  46. 46.
    D. Sherrington and S. von Molnar, Sol. State Comm. 16, 1347 (1975).ADSCrossRefGoogle Scholar
  47. 47.
    J. Friedel, J. Mag. Mag. Mat. 17–19, XXXVIII (1980).Google Scholar
  48. 48.
    W. Kohn, T.K. Lee and Y.R. Lin-Liu, Phys. Rev. B25, 3557 (1982).ADSCrossRefGoogle Scholar
  49. 49.
    P.A. Lee, P.H. Citrin, P. Eisenberger and B.M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).ADSCrossRefGoogle Scholar
  50. 50.
    H. Launois, M. Rawiso, E. Holland-Moritz, R. Pott and D. Wohlleben. Phys. Rev. Lett. 44, 1271 (1980).ADSCrossRefGoogle Scholar
  51. 51.
    K.N. Franf, G. Kaindl, J. Feldhaus, G. Wortman, W. Krone, G. Materlik and H. Bach in Valence Instabilities (1982), op cit, p. 189.Google Scholar
  52. 52.
    J.B. Boyce, R.M. Martin and J.W. Allen in Valence Fluctuations in Solids (1981), op cit, p. 427.Google Scholar
  53. 53.
    T. Murata, P. Lagarde, A. Fontaine, M. Raoux, EXAFS and Near Edge Structure, A. Bianconi, L. Incoccia and S. Striprich eds., Springer (1983) p. 271.CrossRefGoogle Scholar
  54. 54.
    J.C. Mikkelsen, Jr. and J.B. Boyce, Phys. Rev. Lett. 49, 1412 (1982).ADSCrossRefGoogle Scholar
  55. 55.
    F. Holtzberg. 0. Pena, T. Penney and R. Tournier, in Valence Instabilities and Related Narrow Band Phenomena, R.D. Parks ed., Plenum (1977). p. 507.Google Scholar
  56. 56.
    T. Kasuya, J. Physique 37, Colloq. C4–261 (1976).Google Scholar
  57. 57.
    G.S. Cargill, III, F. Holtzberg and T. Penney, to be published.Google Scholar
  58. 58.
    S. von Molnar, T. theis, A. Benoit, A. Briggs, J. Flouquet, J. Ravex and Z. Fisk, in Valence Instabilities (1982), op cit, 0. 389, and refs. therein.Google Scholar
  59. 59.
    B. Batlogg, P.H. Schmidt and J.M. Rowell in Valence Fluctuations in Solids (1981), op cit, p. 267.Google Scholar
  60. 60.
    G. Guntherodt, W.A. thompson, F. Holtzberg and Z. Fisk, Phys. Rev. Lett. 49, 1030 (1982), and Valence Instabilities (1982), op cit, p. 313.Google Scholar
  61. 61.
    I. Frankowski and P. Wachter, Valence Instabilities (1982), op cit, p. 309.Google Scholar
  62. 62.
    P. Haen, F. LaPierre, J.M. Mignot and R. Tournier, Phys. Rev. Lett. 43, 304 (1979).ADSCrossRefGoogle Scholar
  63. 63.
    W.A. thompson and S. von Molnar, J. Appl. Phys. 41, 5218 (1970).ADSCrossRefGoogle Scholar
  64. 64.
    E.L. Wolf in Inelastic Electron Tunneling Spectroscopy, T. Wolfram ed., Springer (1978), p. 220.Google Scholar
  65. 65.
    E.L. Wolf, D.L. Losee, D.E. Cullen and W.D. Compton, Phys. Rev. Lett. 26, 438 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Thomas Penney
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations