Advertisement

A Shell Model Study of the Proton-Neutron Interacting Boson Model

  • Takaharu Otsuka
Part of the Ettore Majorana International Science Series book series (EMISS, volume 10)

Abstract

The proton — neutron interacting boson model (P-N IBM; also called IBM-2) has been recently proposed to describe quadrupole collective states in medium-heavy nuclei.1,2 The P-N IBM consists of proton bosons of L=0 (called sπ) and L=2 (called dπ), and neutron bosons of L=0 (called s v ) and L=2 (called d v ). A two-body interaction between them is assumed. In terms of this model, numerous phenomenological analyses of the collective states have been performed over a wide range of the periodic table.3

Keywords

Shell Model Occupation Probability Active Proton Nucleon Pair Shell Model State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Otsuka, A. Arima, F. Iachello and I. Talmi, Phys. Lett. 76B: 139 (1978).Google Scholar
  2. 2.
    T. Otsuka, A. Arima and F. Iachello, Nucl. Phys. A309: 1 (1978). (1978); T. Otsuka, page 93 in “Interacting Bosons in Nuclear Physics”, F. Iachello, ed., Plenum, New York (1979).Google Scholar
  3. 3.
    For example, F. Iachello, G. Puddu, 0. Scholten, A. Arima and T. Otsuka, Phys. Lett, 89B: 1 (1979): Lecture by B. Barrett in this workshop.Google Scholar
  4. 4.
    T. Otsuka, Doctor Thesis, University of Tokyo (1978).Google Scholar
  5. 5.
    J. Ginocchio, Ann. Phys. (N.Y.) 126: 234 (1980), and references therein.Google Scholar
  6. 6.
    R. A. Broglie, P. F. Bortignon, A. Vitturi and E. Maglione, lectures in this workshop.Google Scholar
  7. 7.
    A. K. Kerman, Ann. Phys. (N.Y.) 12: 300 (1961).ADSCrossRefGoogle Scholar
  8. 8.
    P. J. Brussard and P. W. M. Glaudemans,“Shell-model applications in nuclear spectroscopy”, North-Holland, Amsterdam (1977), and references therein.Google Scholar
  9. 9.
    K. T. Hecht, J. B. McGrory and J. P. Draayer, Nucl. Phys. A197: 369 (1972); J. B. McGrory, Phys. Rev. Lett, 41: 533 (1978).Google Scholar
  10. 10.
    A. Arima and M. Ichimura, Prog. Theor. Phys. 36: 296 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    T. Otsuka, to appear.Google Scholar
  12. 12.
    A. Bohr and B. R. Mottelson, “Nuclear Structure” vol. II, Benjamin, Reading, (1975).Google Scholar
  13. 13.
    J. P. Schiffer and W. W. True, Rev. Mod. Phys. 48: 191 (1976); and references therein.Google Scholar
  14. 14.
    G. H. Herling and T. T. S. Kuo, Nucl. Phys. A181: 113 (1972); and private communication from T. T. S. Kuo.Google Scholar
  15. 15.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 99: 253 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 111: 201 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 123: 468 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    The shell model space is truncated in most of diagonalizations because of the limitation of the computing facility. The dimension of the shell model space is, however, still much larger (ti 3000 dim.) than that of the S-D subspace 60 dim.), and this truncation causes practically no effects on final conclusions. Discussions in this talk do not have to be in 0.1% precision.Google Scholar
  19. 19.
    T. Otsuka and A. Arima, Phys. Lett. 77B: 1 (1978).Google Scholar
  20. 20.
    I. Talmi, Nucl. Phys. A172: 1 (1971).CrossRefGoogle Scholar
  21. 21.
    H. Feshbach, Ann. Phys. (N.Y.) 5: 357 (1958); 19: 287 (1962).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Takaharu Otsuka
    • 1
  1. 1.Physics DivisionJapan Atomic Energy Research InstituteTokai, IbarakiJapan

Personalised recommendations