Advertisement

Bose-Fermi Symmetries in Nuclei

  • F. Iachello
Part of the Ettore Majorana International Science Series book series (EMISS, volume 10)

Abstract

In the last few years, several examples of dynamical symmetries have been found in the spectra of even-even nuclei. These symmetries can be called of “normal” type, since they are related to properties of a system of identical particles (bosons). Within the framework of an algebraic description, these symmetries arise whenever the following set of conditions is met:
  1. (i)

    the Hamiltonian, H, which describes the system, has group structure G.

     
  2. (ii)

    H can be written in terms only of Casimir invariants of a group chain G ⊃ G′ ⊃ G″ ⊃... .

     

Keywords

Group Chain Dynamical Symmetry Spinor Group Interact Boson Model Bilinear Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 99 (1976), 253.ADSCrossRefGoogle Scholar
  2. 2.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 111 (1978), 201.ADSCrossRefGoogle Scholar
  3. 3.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 123 (1979), 468.ADSCrossRefGoogle Scholar
  4. 4.
    F. Iachello and O. Scholten, Phys. Rev. Lett. 43 (1979), 679.ADSCrossRefGoogle Scholar
  5. 5.
    L. Corwin, Y. Ne’eman and S. Sternberg, Rev. Mod. Phys. 47 (1975), 573 and references therein.Google Scholar
  6. 6.
    F. Iachello, Phys. Rev. Lett. 44 (1980), 772.ADSCrossRefGoogle Scholar
  7. 7.
    R. Gilmore, “Lie Groups, Lie Algebras and some of their Applications”, J. Wiley, New York, (1974), p. 111.Google Scholar
  8. 8.
    F.D. Murnagham, “The Theory of Group Representations”, John Hopkins, Baltimore, (1938).Google Scholar
  9. 9.
    A. Arima and F. Iachello, Phys. Rev. Lett. 40 (1978), 385.ADSCrossRefGoogle Scholar
  10. 10.
    V.S. Popov and A.M. Perelomov, Sov. J. Nucl. Phys. 5 (1967), 489. C.O. Nwachuku and M.A. Rashid, J. Math. Phys. 18 (1977), 1387.Google Scholar
  11. 11.
    J.A. Cizewski, R.F. Casten, G.J. Smith, M.L. Stelts, W.R. Kane, H.G. Börner and W.F. Davidson, Phys. Rev. Lett. 40 (1978), 167.ADSCrossRefGoogle Scholar
  12. 12.
    M. Finger, R. Foucher, J.P. Husson, J. Jastrzebski, A. Johnson, G. Astzer, B.R. Erdal, A. Kjelberg, P. Patzelt, K. Hoglund, S.G. Malmskog and R. Henck, Nucl. Phys. A188 (1972), 369.CrossRefGoogle Scholar
  13. 13.
    J. Lukasiak, R. Kaczarowski, J. Jastrzebski, S. André and J. Treherne, Nucl. Phys. A313 (1979), 191.CrossRefGoogle Scholar
  14. 14.
    S. Kuyucak, private communication.Google Scholar
  15. 15.
    M.N. Harakeh, P. Goldhoorn, Y. Iwasaki, J. Lukasiak, L.W. Put, S.Y. van der Werf and F. Zwarts, KVI preprint 240 (1980).Google Scholar
  16. 16.
    C. Baktash, J.X. Saladin, J.J. O’Brien and J.G. Alessi, Phys. Rev. C18 (1978), 131.ADSGoogle Scholar
  17. 17.
    Y. Iwasaki, E.H.L. Aarts, M.N. Harakeh, R.H. Siemssen and S.Y. van der Werf, KVI preprint (1980).Google Scholar
  18. 18.
    Y. Yamazaki, R.K. Sheline and D.G. Burke, Z.Physik A285 (1978), 191.ADSCrossRefGoogle Scholar
  19. 19.
    P.G.D. Freund, and I. Kaplanski, J. Math. Phys. 17 (1976), 228.ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    I. Bars and A. Baha Balantekin, Yale Preprint YTT 80–06 (1980).Google Scholar
  21. 21.
    J. Wood, these Proceedings.Google Scholar
  22. 22.
    J.A. Cizewski, these Proceedings.Google Scholar
  23. 23.
    A.B. Balantekin, I. Bars and F. Iachello, to be published.Google Scholar
  24. 24.
    J.N. Ginocchio, Phys. Lett. 79B (1978), 173;ADSGoogle Scholar
  25. J.N. Ginocchio, ibid. 85B (1979), 9;Google Scholar
  26. J.N. Ginocchio, Ann. Phys. (N.Y.) 126 (1980), 234.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • F. Iachello
    • 1
    • 2
  1. 1.Physics DepartmentYale UniversityNew HavenUSA
  2. 2.Kernfysisch Versneller InstituutGroningenThe Netherlands

Personalised recommendations