The Role of Cells in the Calcification Process

  • J. N. M. Heersche
  • H. C. Tenenbaum
  • C. S. Tam
  • C. G. Bellows
  • J. E. Aubin
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 184)


Although the vertebrate body contains an abundance of potential sites for mineralization, not every tissue calcifies, which indicates that regulatory processes are operative. The mechanisms responsible for stimulating and inhibiting the initiation and progression of mineralization are likely to be cell-mediated, and various experimental systems have been used to study the involvement of cells, the function of which may be regulated systemically or locally. In this chapter, we will discuss experiments in which we studied the role of vitamin D metabolites as regulators of bone matrix calcification in rats in vivo and experiments designed to analyse the factors involved in regulation of de novo mineralization of bone formed in vitro. First, however, we present a brief overview of the matrix constituents associated with calcification.


Amorphous Calcium Phosphate Matrix Vesicle Organic Phosphate Bone Nodule Noncollagenous Protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, H.C. Electron microscopic studies of induced cartilage development and calcification. J. Cell Biol. 35:81–101, 1967. Arsenault, L.E. personal communication.Google Scholar
  2. Bellows, C.G., Aubin, J.E., Heersche, J.N.M. and Antosz, M.E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif. Tiss. Int. 38: 143, 1986.Google Scholar
  3. Bhargava, U., Bar-Lev, M., Bellows, C.G. and Aubin, J.E. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9: 155–163, 1988.PubMedCrossRefGoogle Scholar
  4. Bonucci, E. Fine structure of early cartilage calcification. J. Ultrastruc. Res. 20: 33–50, 1967.CrossRefGoogle Scholar
  5. Boskey, A.L. Noncollagenous marix proteins and their role in mineralization. Bone and Mineral 6: 111–123, 1989.PubMedCrossRefGoogle Scholar
  6. de Bernard, B., Bianco, P., Bonucci, E., Constantine, M., Lunazzi, G.C., Martinuzzi, P., Modricky, C., Moro, L., Panfili, E., Pollesello, P., Stagni, N. and Vittur, F. Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J. Cell Biology 103: 1615–1623, 1986.CrossRefGoogle Scholar
  7. Delmas, P.D., Malaval, L., Arlot, M.E. and Meunier, P.J. Serum bone gla protein compared to bone histomorphometry in endocrine disease. Bone 6: 339, 1985.PubMedCrossRefGoogle Scholar
  8. Dickson, I.R., Dimuzio, M.T., Volpin, D. Ananthanarayanan, S. and Veis, A. The extraction of phosphoproteins from bovine dentin. Calcified Tissue Research 9: 51–61, 1975.CrossRefGoogle Scholar
  9. Eastwood, J.B., de Wardemen, H.E., Gray, R.W. and Lemann, Jr. L. Normal plasma 1,25(OH)2 vitamin D concentration in nutritional osteomalacia. Lancet 1: 1377, 1979.PubMedCrossRefGoogle Scholar
  10. Endo, H. Ossification in tissue culture. I. Histological development of the femur of chick embryo in various liquid media. Exp. Cell Res. 21: 151–163, 1960.CrossRefGoogle Scholar
  11. Engel, J., Taylor, W., Paulsson, M., Sage, H., and Hogan, B. Calcium binding domains and calcium-induced conformational transition ofGoogle Scholar
  12. SPARC/BM-40/osteonectin an extracellular glycoprotein expressed in mineralized and non-mineralized tissues. Biochemistry 26: 6958–6965, 1987.CrossRefGoogle Scholar
  13. Harrison, J.R., Petersen, D.N., Lichtler, A.C., Mador, A.T., Rowe, D. and Kream, B. 1,25-dihydroxyvitamin D3 inhibits transcription of type I collagen genes in the rat osteosarcoma cell line ROS 17/2.8. Endocrinology 125: 327–333, 1989.PubMedCrossRefGoogle Scholar
  14. Ishida, H., Bellows, C.G., Aubin, J.E. and Heersche, J.N.M. Effects of vitamin D3 metabolites on formation of bone nodules from isolated rat calvaria cells in vitro. J. Dent. Res. 67. Special Issue 350 (Abstract), 1988.Google Scholar
  15. Ito, Y., Endo H., Enomoto, H., Wakabayashi, K. and Takamura, K. Ossification in tissue culture II. Chemical development of the femur of chick embryo in various liquid media. Exp. Cell Res. 31: 119–127, 1963.Google Scholar
  16. Lee, K.L., Bellows, C., Aubin, J.E. and Heersche, J.N.M. Work in progress. 1989.Google Scholar
  17. Linde, A., Lussi, A. and Crenshaw, M.A. Mineral induction by immobi- lized polyanionic proteins. Calcif. Tiss. Int. 44: 286–295, 1989.CrossRefGoogle Scholar
  18. Manolagas, S.C., Burton, D.W. and Deftos, L.J. 1,25-dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J. Biol. Chem. 256: 7115–7117, 1981.PubMedGoogle Scholar
  19. Nefussi, J.-R., Boy-Lefebre, M.L., Boulebacke, H. and Forest, N. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differention 29: 160, 1985.CrossRefGoogle Scholar
  20. Neuman, W.F., DiStefano, V. and Mulryan, B.J. The surface chemistry of bone. III. Observations on the role of phosphatase. J. Biol. Chem. 193: 227–235, 1951.PubMedGoogle Scholar
  21. Nyweide, P.J. Embryonic chicken periosteum in tissue culture, osteoid formation and calcium uptake. Proc. K. Ned. Akad. Wet. C78: 410, 1975.Google Scholar
  22. Ornoy, A.D., Goodwin, D., Noff, D. and Edelstein, S. 24,25-Dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature 276: 5, 1978.CrossRefGoogle Scholar
  23. Osdoby, P. and Kaplan, A.J. Osteogenesis in cultures of limb mesenchymal cells. Dev. Biol. 73: 84–102, 1979.Google Scholar
  24. Price, P.A. and Baukol, S.A. 1,25-dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. JBC 255: 11660–11663, 1980.Google Scholar
  25. Prince, C.W. and Butler, W.T. 1,25-dihydroxyvitamin D3 regulates the biosÿttthesis of osteopontin, a bone-derived cell attachment protein. Collagen Related Research 7: 305–313, 1987.CrossRefGoogle Scholar
  26. Raisz, L.G., Maina, G.M., Gworek, S.C., Dietrich, J.W. and Canalis, E.M. Hormonal control of bone collagen synthesis in vitro. Inhibitory effect of 1-hydroxylated vitamin D metabolites. Endocrinology 102: 731–735, 1978.Google Scholar
  27. Robison, R. The possible significance of hexose phosphoric esters in ossification. Biochem. J. 17: 286–293, 1923.PubMedGoogle Scholar
  28. Shimizu, N., Vieth, R., Reimers, S. and Heersche, J.N.M. The effects of vitamin D restriction on bone and dentin apposition in the rat. J. Dent. Res. 67: p. 148 (abstract), 1988.Google Scholar
  29. Stenner, D.D., Tracy, R.P., Riggs, B.L., and Mann, K.G. Human platelets contain and secrete osteonectin, a major protein of mineralizedGoogle Scholar
  30. bone. Proc. Natl. Acad. Sci. USA 83: 6892–6896, 1986.CrossRefGoogle Scholar
  31. Tam, C.S., Heersche, J.N.M., Jones, G., Murray, T.M. and Rasmussen, H. The effect of vitamin D on bone in vivo. Endocrinology.2224, 1986.Google Scholar
  32. Tam, C.S., Jones, G., and Heersche, J.N.M. The effect of vitamin D restriction on bone apposition in the rat and its dependence on parathyroid hormone. Endocrinology 101: 1448, 1981.CrossRefGoogle Scholar
  33. Tenenbaum, H. and Heersche, J.N.M. Differentiation of osteoblasts and formation of mineralized bone in vitro. Calcif. Tiss. Int. 34: 76–79, 1982.CrossRefGoogle Scholar
  34. Tenenbaum, H. Levamisole and inorganic pyrophosphate inhibit B-glycerophosphate induced mineralization of bone formed in vitro. Bone and Mineral 3: 13–26, 1987.PubMedGoogle Scholar
  35. Tenenbaum, H.C. and Palangio, K. Phosphoethanolomine and fructose 1,6-diphosphate induced calcium uptake in bone formed in vitro. Bone and Mineral 2: 201–210, 1987.PubMedGoogle Scholar
  36. Termine, J.D., Kleinman, H.D., Whitson, S.W., Conn, K.M., McGarvey, M.L. and Martin, G.R. Osteonectin, a bone-specific protein binding mineral to collagen. Cell 26: 99–105, 1981.PubMedCrossRefGoogle Scholar
  37. Thorogood, P. In vitro studies on skeletogenic potential of membrane bone periosteal cells. J. Embryol. Exp. Morphol. 54:185–207, 1979.Google Scholar
  38. Wasi, S., Otsuka, K., Yao, K.L., Tung, P.S., Aubin, J.E., Sodek, J. and Termine, J.D. An osteonectin-like protein in porcine periodontal ligament. Can. J. Biochem. and Cell Biol. 62: 470–478, 1984.Google Scholar
  39. Whyte, M.P. Alkaline phosphatase: physiological role explored in hypophosphatasia. In: Bone and Mineral Research/6. W.A. Peck, editor. Elsevier, Amsterdam-New York-Oxford, 1989. p. 175–218.Google Scholar
  40. Wuthier, R.E. and Register, T.C. Role of AP, a polyfunctional enzyme, in mineralizing tissues. In: Butler, W.T., ed. The chemistry and biology of mineralized tissues. Birmingham, Alabama. Ebsco Media. 113–24, 1985.Google Scholar
  41. Wuthier, R.E., Bisaz, S., Russell, R.G.G. et al. Relationship between pyrophosphate, amorphous calcium phosphate, and other factors in the sequence of calcification in vitro. Calcif. Tiss. Res. 10: 198–206, 1972.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. N. M. Heersche
    • 1
  • H. C. Tenenbaum
    • 2
  • C. S. Tam
    • 3
  • C. G. Bellows
    • 1
  • J. E. Aubin
    • 1
  1. 1.MRC Group in Periodontal Physiology, Faculty of DentistryUniversity of TorontoTorontoCanada
  2. 2.Mt. Sinai Hospital Research Institute and Faculty of DentistryUniversity of TorontoTorontoCanada
  3. 3.Queen Elizabeth Hospital Research Institute and Dept. of PathologyUniversity of TorontoTorontoCanada

Personalised recommendations