Physico-Chemical Principles of Biomineralization

  • Edward D. Eanes
Part of the NATO ASI Series book series (NSSA, volume 184)


Fundamental physico-chemical knowledge of the mineral components in skeletal tissues has increased substantially during the 3 decades since the publication of Neuman and Neuman’s (1958) pioneering treatise on this subject. In particular, the dominant apatitic phase has become especially well characterized in terms of its chemical, structural, and morphological features. Substantial progress has also been made in our understanding of the dynamics of calcium phosphate precipitation in aqueous synthetic and in vitro systems. Less complete, however, is our knowledge of the actual deposition processes by which the bony extracellular matrix is invested with these mineral salts in vivo.


Calcium Phosphate Heterogeneous Nucleation Homogeneous Nucleation Amorphous Calcium Phosphate Matrix Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akisaka, T., Kawaguchi, H., Subita, G. P., Shigenaga, Y., and Gay,C. V., 1988, Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze substitution, Calcif. Tissue Int. 42:383PubMedCrossRefGoogle Scholar
  2. Anderson, H. C., 1976, Matrix vesicles of cartilage and bone, in: “The Biochemistry and Physiology of Bone,” G. H. Bourne, ed., Academic Press, New York.Google Scholar
  3. Anderson, H. C., 1980, Calcification processes, Pathol. Annu. 15:45PubMedGoogle Scholar
  4. Anderson, H. C., 1969, Vesicles associated with calcification in the matrix of epiphyseal cartilage., J. Cell Biol. 41: 59PubMedCrossRefGoogle Scholar
  5. Arsenault, A. L., Ottensmeyer, F. P., and Heath, I. B., 1988, An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution., J. Ultrastruct. Mol. Struct. Res. 98:32PubMedCrossRefGoogle Scholar
  6. Bab, I. A., Muhlrad, A., and Sela, J., 1979, Ultrastructural and biochemical study of extracellular matrix vesicles in normal alveolar bones of rats., Cell Tiss. Res. 202:1Google Scholar
  7. Blumenthal, N. C., Posner, A. S., Silverman, L. C., and Rosenberg, L. C., 1979, The effect of proteoglycans on in vitro hydroxyapatite formation., Calcif. Tissue Int. 27:75PubMedCrossRefGoogle Scholar
  8. Bonucci, E., 1967, Fine structure of early cartilage calcification, J. Ultrastruct. Res. 20:33CrossRefGoogle Scholar
  9. Boskey, A. L., 1981, Current concepts of the physiology and biochemistry of calcification., Clin. Orthop. Rel. Res. 157:225Google Scholar
  10. Boskey, A. L., and Posner, A. S., 1977, The role of synthetic and bone extracted Ca-Phospholipid-PO4 complexes in hydroxyapatite formation., Calcif. Tiss. Res. 23:251CrossRefGoogle Scholar
  11. Boyan-Salyers, B. D., Vogel, J. J., Riggan, L. J., Summers, F., and Howell, R. E., 1978, Application of a microbial model to biologic calcification, Metab. Bone Dis. 1:143CrossRefGoogle Scholar
  12. Brown, W. E., 1966, Crystal growth of bone mineral., Clin. Orthop. Rel. Res. 44:205Google Scholar
  13. Brown, W. E., Schroeder, L. W., and Ferris, J. S., 1979, Interlayering of crystalline octacalcium phosphate and hydroxyapatite., J. Phys. Chem., 83:1385CrossRefGoogle Scholar
  14. Cahn, J. W., 1967, On the morphological stability of growing crystals, in: “Crystal Growth,” H. S. Peiser, ed., Pergamon Press Ltd., Oxford.Google Scholar
  15. Diamond, A. G., and Neuman, W. F., 1979, Macromolecular inhibitors of calcium phosphate precipitation in bone., in: “Vitamin K Metabolism and Vitamin K Dependent Proteins,” J. W. Suttie, ed., University Park Press, Baltimore.Google Scholar
  16. Doi, Y., Okuda, R., Takezawa, Y., Shibata, S., Moriwaki, Y., Wakamatsu, N., Shimizu, N., Moriyama, K., and Shimokawa, H., 1989, Osteonectin inhibiting de novo formation of apatite in the presence of collagen., Calcif. Tissue Int. 44:200Google Scholar
  17. Eanes, E. D., 1985, Dynamic aspects of apatite phases of mineralized tissues-model studies., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler edGoogle Scholar
  18. Eanes, E. D., and Costa, J. L., 1983, X-537A ionophore-mediated calcium transport and calcium phosphate formation in Pressman cells., Calcif. Tissue Int. 35:250Google Scholar
  19. Eanes, E. D., Gillessen, I. H., and Posner, A. S., 1965, Intermediate states in the precipitation of hydroxyapatite., Nature, 208: 365Google Scholar
  20. Eanes, E. D., and Hailer, A. W., 1985, Liposome-mediated calcium phosphate formation in metastable solutions., Calcif. Tissue Int. 37:390PubMedCrossRefGoogle Scholar
  21. Eanes, E. D., Hailer, A. W., and Costa, J. L., 1984, Calcium phosphate formation in aqueous suspensions of multilamellar liposomes., Calcif. Tissue Int. 36:421Google Scholar
  22. Eanes, E. D., and Meyer, J. L., 1977, The maturation of crystalline calcium phosphates in aqueous suspension at physiologic pH., Calcif. Tissue Res. 23:259CrossRefGoogle Scholar
  23. Eanes, E. D., and Posner, A. S., 1965, Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite., Trans. NY Acad. Sci. 28:233Google Scholar
  24. Eanes, E. D., and Posner, A. S., 1970, A note on the crystal growth of hydroxyapatite precipitated from aqueous solutions., Mat. Res. Bull. 5:377CrossRefGoogle Scholar
  25. Eidelman, N., Chow, L. C., and Brown, W. E., 1987, Calcium phosphate saturation levels in ultrafiltered serum., Calcif. Tissue Int. 40:71Google Scholar
  26. Engstrom, A., and Zetterstrom, R., 1951, Studies on the ultrastructure of bone, Exp. Cell Res., 2:268CrossRefGoogle Scholar
  27. Garside, J., 1982, Nucleation, in: “Biological Mineralization and Demineralization.,” G. H. Nancollas, ed., Springer-Verlag, Berlin.Google Scholar
  28. Glimcher, M. J., 1959, Molecular biology of mineralized tissues with particular reference to bone., Rev. Mod. Phys. 31: 359Google Scholar
  29. Glimcher, M. J., 1976, Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification., in: “Handbook of Physiology-Endocrinology VII.,” Williams and Wilkins Co., Baltimore.Google Scholar
  30. Hauschka, P. V., 1985, Osteocalcin and its functional domains., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.Google Scholar
  31. Katchburian, E., 1973, Membrane-bound bodies as initiators of mineralization of dentine., J. Anat. 116:285Google Scholar
  32. Landis, W. J., 1985, Temporal sequence of mineralization in calcifying turkey leg tendon., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media Inc., Birmingham.Google Scholar
  33. Lehninger, A. L., 1970, Mitochondria and calcium ion transport., Biochem. J. 119:129Google Scholar
  34. Linde, A., Lussi, A., and Crenshaw, M. A., 1989, Mineral induction by immobilized polyanionic proteins., Calcif. Tissue Int. 44:286PubMedCrossRefGoogle Scholar
  35. Maroudas, A., 1979, Physicochemical properties of articular cartilage., in: “Adult Articular Cartilage,” M. A. R. Freeman, ed., Pitman Medical, Tunbridge Wells.Google Scholar
  36. Meyer, J. L., 1984, Can biological calcification occur in the presence of pyrophosphate?, Arch. Biochem. Biophys. 231:1PubMedCrossRefGoogle Scholar
  37. Meyer, J. L., and Eanes, E. D., 1978, A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation., Calcif. Tissue Res. 25:59PubMedCrossRefGoogle Scholar
  38. Morris, D. C., Vaananen, H. K., and Anderson, H. C., 1983, Matrix vesicle calcification in rat epiphyseal growth plateGoogle Scholar
  39. cartilage prepared anhydrously for electron microscopy., Metab. Bone Dis. 5:131Google Scholar
  40. Nelson, D. G. A., Salimi, H., and Nancollas, G. H., 1986, Octacalcium phosphate and apatite overgrowths: A crystallographic and kinetic study., J. Colloid Interface Sci., 110:32Google Scholar
  41. Neuman, W. F., and Neuman, M. W., 1958, “The Chemical Dynamics of Bone Mineral,” University of Chicago Press, Chicago. Nielsen, A. E., 1964, “Kinetics of Precipitation,” Pergamon Press, Oxford.Google Scholar
  42. Nylen, M. U., Scott, D. B., and Mosley, V. M., 1960, Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and x-ray microscopy, in: “Calcification in Biological Systems.,” R. F. Sognnaes, ed., AAAS, Washington.Google Scholar
  43. Price, P. A., Otsuka, A. S., Poser, J. W., Kristaponis, J., and Raman, N., 1976, Characterization of a 7-Carboxyglutamic acid-containing protein from bone., Proc. Natl. Acad. Sci. USA, 73:1447Google Scholar
  44. Sauer, G. R., and Wuthier, R. E., 1988, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro., J. Biol. Chem., 263:13718PubMedGoogle Scholar
  45. Schiffmann, E., Martin, G. R., and Miller, E. J., 1970, Matrices that calcify, in: “Biological Calcification: Cellular and Molecular Aspects,” H. Schraer, ed., Appleton-CenturyCrofts, New York.Google Scholar
  46. Sutfin, L. V., Holtrop, M. E., and Ogilvie, R. E., 1971, Microanalysis of individual mitochondrial granules with diameters less than 1000 A., Science 174: 947Google Scholar
  47. Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., and Martin, G. R., 1981, Osteonectin, a bone-specific protein linking mineral to collagen., Cell, 26: 99PubMedCrossRefGoogle Scholar
  48. Termine, J. D., Eanes, E. D., and Conn, K. M., 1980, Phosphoprotein modulation of apatite crystallization., Calcif. Tissue Int. 31:247PubMedCrossRefGoogle Scholar
  49. Traub, W., Jodaikin, A., and Weiner, S., 1985, Diffraction studies of enamel protein-mineral structural relations., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.Google Scholar
  50. Veis, A., 1985, Phosphoproteins of dentin and bone., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.Google Scholar
  51. Walton, A. G., 1967, “The Formation and Properties of Precipitates,” Interscience, New York.Google Scholar
  52. Weinstock, M., and Leblond, C. P., 1973, Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor., J. Cell Biol. 56: 838PubMedCrossRefGoogle Scholar
  53. Wuthier, R. E., 1977, Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid., Calcif. Tissue Res. 23:125PubMedCrossRefGoogle Scholar
  54. Wuthier, R. E., 1982, A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitrochondria and matrix vesicles., Clin. Orthop. 169: 219PubMedGoogle Scholar
  55. Wuthier, R. E., 1982, The role of phospholipid-calcium-phosphate complexes in biological mineralization., in: “The Role of Calcium in Biological Systems.,” L. J. Anghileri, and A. M. Tuffet-Anghileri, eds., CRC Press, Boca Raton.Google Scholar
  56. Wuthier, R. E., and Register, T. C., 1985, Role of alkaline phosphatase, a polyfunctional enzyme, in mineralizing tissues., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.Google Scholar
  57. Yamada, M., 1976, Ultrastructural and cytochemical studies on the calcification of the tendon bone joint., Histol. Jap. 39:347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Edward D. Eanes
    • 1
  1. 1.National Institute of Dental Research, Bone Research Branch, Research Associate ProgramNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations