Skip to main content

Spectroscopic Probes of Protein Structure

  • Chapter
Methods for Protein Analysis

Abstract

With few exceptions, the goal of most protein purification efforts is to obtain a sample that is not only pure, but that also maintains the protein in its native (i.e., biologically active) conformation. The ability to describe the conformation of a protein in solution, and to relate changes in conformation with biological activity, is thus a major focus of protein science. The most detailed description of protein structures come from the determination of the complete three-dimensional arrangement of protein components in space, from x-ray crystallographic or nuclear magnetic resonance (NMR) studies. Despite their power, however, these methods are not without their attendant drawbacks. X-ray diffraction studies of proteins are dependent on obtaining protein crystals of sufficient size and quality to yield usable diffraction patterns. This can often be a time consuming, and not necessarily successful, undertaking. Even when high quality crystals are obtained, solving the structure from the resulting diffraction patterns is a laborious and time consuming effort. Add to this the fact that certain classes of proteins, such as integral membrane proteins, are inherently difficult to crystallize, and one soon realizes that x-ray crystallography, while an extremely powerful method, is not a panacea for protein structural problems. Multidimensional NMR spectroscopy likewise suffers from certain difficulties that restrict its utility. Perhaps the greatest limit to the use of NMR spectroscopy for solving protein structures is that the complexity of the multidimensional data is such that the size of a protein that can reasonably be solved is limited to about 100 amino acids or so. While significant efforts are currently being put forth to push up the size limit for NMR spectroscopy, at least for the present this method is limited to relatively small proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campbell, I. D., and Dwek, R. A. (1984) Biological Spectroscopy, Benjamin/Cummings. Menlo Park, CA.

    Google Scholar 

  • Cantor, C. R., and Schimmel, P. R. (1980) Biophysical Chemistry, Part II, W. H. Freeman, San Francisco, CA.

    Google Scholar 

  • Chang, C. T.; Wu, C.-S. C.; and Yang, J. T. (1978) Analyt. Biochem., 91, 12.

    Article  Google Scholar 

  • Chen, R. F., and Edelhoch, H. (1975) Biochemical Fluorescence, Vols. 1 and 2, Marcel Dekker, New York.

    Google Scholar 

  • Chen, Y. H., and Yang, J. T. (1971) Biochem. Biophys. Res. Commun., 44, 1285.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, R. A.; Ji, H.; Halfpenny, A. J.; Williams, R. W.; Thompson, K. C.; Herber, W. K.; Thomas, K. A.; Brunner, M. W.; Sitrin, R. D.; Yamazaki, S.; and Middaugh, C. R. (1991) Arch. Biochem. Biophys., 289, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Demchenko, A. P. (1986) Ultraviolet Spectroscopy of Proteins, Springer-Verlag, New York.

    Book  Google Scholar 

  • Donovan, J. W. (1973) Meth. Enzymol., 27, 497–525.

    Article  PubMed  CAS  Google Scholar 

  • Fodor, S. P. A.; Copeland, R. A.; Grygon, C. A.; and Spiro, T. G. (1989) J. Am. Chem. Soc. USA, 111, 5509.

    Article  CAS  Google Scholar 

  • Freifelder, D. (1982) Physical Biochemistry, W. H. Freeman, San Francisco, CA. Herskovits, T. T., and Sorensen, M. (1968) Biochemistry, 7, 2533–2542. Holzwarth, G. N., and Doty, P. (1965) J. Am. Chem. Soc., 87, 218.

    Google Scholar 

  • Kotake, S.; Hey, P.; Mirmira, R. G.; and Copeland, R. A. (1991) Arch. Biochem. Biophys., 285, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Lackowicz, J. R. (1983) Principles of Fluorescence Spectroscopy,Plenum Press, New York.

    Google Scholar 

  • Lehrer, S. S. (1971) Biochemistry, 10, 3254–3263.

    Article  PubMed  CAS  Google Scholar 

  • Parker, F. S. (1983) Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, Plenum Press, New York.

    Google Scholar 

  • Ragone, R.; Colonna, G.; Balestrieri, C.; Servillo, L.; and Irace, G. (1984) Biochemistry, 23, 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. T.; Wu, C.-S. C.; and Martinez, H. M. (1986) Meth. Enzymol.,130 208269.

    Google Scholar 

  • Zabin, H. B. (1991) Ph.D. Thesis, The University of Chicago, Chicago, Illinois. Zabin, H. B., and Terwilliger, T. C. (1991) J. Mol. Biol., 219, 257–275.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Copeland, R.A. (1994). Spectroscopic Probes of Protein Structure. In: Methods for Protein Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1505-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1505-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1507-1

  • Online ISBN: 978-1-4757-1505-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics