QCD and Nuclear Structure

  • Konrad Bleuler


QCD leads to a decisive renewal, i.e.redefinition of nuclear theory: an all over reconstruction starting directly from the basic quark-gluon level (thus replacing the conventional and half-phenomenological nucleon-boson scheme) is outlined within the framework of nuclear shell structure. Hereby essential - i.e. non-perturbative and group-theoretical - features of QCD play a decisive role. At the same time, a few characteristic inconsistencies - a.o. the solitonlike behaviour of the extended,in nuclear matter embedded, nucleons - of the conventional approach are overcome in a natural way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Weyl, Z. Physik, 56 (1929) 330CrossRefGoogle Scholar
  2. 2.
    H.R. Petry, Springer Lect.Not.Phys., Nr. 197, 236 (1984)CrossRefGoogle Scholar
  3. K. Bleuler et al., Zeitschr.Naturf., 38a, 705 (1983)Google Scholar
  4. K. Bleuler, Proc. AMCO-7, 399 (Darmstadt 1984 ), Persp. Nucl.Phys. (World Scient.) 455 (1984)Google Scholar
  5. H.R. Petry, H. Bohr, K.S. Narain et al., ‘An Application of QCD in Nuclear Structure’, Phys.Lett. 159B, p. 365 (1985)Google Scholar
  6. 3.
    E.V. Shuryak, Nucl.Phys. B203 (1982) 93CrossRefGoogle Scholar
  7. E.V. Shuryak, The QCD Vacuum, Hadrons and Superdense Matter, World Scientific, Singapore (1986), to appearGoogle Scholar
  8. 4.
    A. Chodos et al., P.R. D9 (1974) 3471 and E.V. Shuryak, CERN 83–01 (Febr. 1983 )Google Scholar
  9. 5.
    H. Hofestädt and S. Merk, Diploma and Doctor Thesis, Bonn, Inst. f. Theor. Nucl. Phys., Nusallee 14–16, (unpublished)Google Scholar
  10. 6.
    H. Weyl, The Classical Groups, Princeton Math. Series (1946)Google Scholar
  11. 7.
    K. Bleuler, Nuclear Forces in the Light of Modern Gauge Theory, 6th Int. Conf. on Nuclear Reaction Mechanisms, ed. E. Gadioli, Univ. di Milano, in Ricerea Scientifica (1985)Google Scholar
  12. 8.
    C.N. Yang, R. Mills,Phys. Rev. 95, 631, 96, 191 (1954)Google Scholar
  13. R. Utiyamah, Phys.Rev. 101 (1956) 1597CrossRefGoogle Scholar
  14. 9.
    W. Drechsler, M.E. Mayer, Fibre Bundle Techniques in Gauge Theories, Springer Lect. Notes in Physics, 67 (1977)Google Scholar
  15. A. Trautman, Reports on Math. Phys. 1 (1970) 29Google Scholar
  16. A. Held (ed.): General Relativity and Gravitation, Vol. 1, Plenum Press, New York (1980), 287Google Scholar
  17. 10.
    M. Gell’Mann, Y. Ne’eman, The Eightfold Way, W.A. Benjamin, New York (1964)Google Scholar
  18. 11.
    For example: C. Rebbi (ed.): Lattice Gauge Theories and Monte Carlo Simulations, World Scientific, Singapore (1983)Google Scholar
  19. 12.
    G. Hooft, Phys.Rev. D14 (1976) 3432CrossRefGoogle Scholar
  20. 13.
    For very special cases see: H. Lipkin, Lie Groups for Pedestrians, North Holland (1967)Google Scholar
  21. 14.
    For a general introduction, see e.g. F.J. Yndurain, Quantum Chromo-dynamics, Springer 1983Google Scholar
  22. 15.
    See e.g. contribution by Y. Ne’eman in this volumeGoogle Scholar
  23. 16.
    The explicit solution, i.e. the conventional (but less intuitive) expression reads (in our notation): Pu = [y,DUyQ]- and may be proved, a.o. by covariant derivation of the commutation relations (8).Google Scholar
  24. 17.
    Compare, e.g. F.J. Yndurain, Quantum Chromodynamics, Springer Monographs 1983, in particular the most extended list of literature therein. (Historically, the definite statement about introducing the quantized gauge field according SU(3), i.e. QCD, in relation to the colour degree of freedom of the quarks came only step by step).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Konrad Bleuler
    • 1
  1. 1.Institut für Theoretische KernphysikUniversität BonnBonnWest-Germany

Personalised recommendations