The Radon Transform on Two-Point Homogeneous Spaces

  • Sigurdur Helgason
Part of the Progress in Mathematics book series (PM, volume 5)


Let X be a complete Riemannian manifold, x a point in X and X x the tangent space to X at x. Let Expx denote the mapping of X x into X given by Exp x (u) = γ u (1) where t → γ u (t) is the geodesic in X through x with tangent vector u at x = γ u (0).


Symmetric Space Constant Curvature Spherical Function Inversion Formula Complete Riemannian Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Funk, P. Über eine geometrische Anwendung der Abelschen Integralgleichnung, Math. Ann. 77 (1916), 129–135.MathSciNetCrossRefGoogle Scholar
  2. Helgason, S. Differential Operators on homogeneous spaces, Acta Math. 102 (1959), 239–299.MathSciNetCrossRefMATHGoogle Scholar
  3. Goldschmidt, H. The Radon transform for symmetric forms on real symmetric spaces, Contemp. Math. 113 (1990), 81–96.MathSciNetCrossRefGoogle Scholar
  4. Helgason, S. Some remarks on the exponential mapping for an affine connection, Math. Scand. 9 (1961), 129–146.MathSciNetMATHGoogle Scholar
  5. John, F. Integral geometry on Grassmann manifolds and calculus of invariant differential operators, preprint, 1998.Google Scholar
  6. Kurusa, A. A characterization of the Radon transform’s range by a system of PDE’s, J. Math. Anal. Appl. 161 (1991), 218–226.MathSciNetCrossRefMATHGoogle Scholar
  7. Lissianoi, S. and Ponomarev, I. On the inversion of the geodesic Radon transform on the hyperbolic plane, Inverse Problems 13 (1997), 1053–1062.MathSciNetCrossRefMATHGoogle Scholar
  8. Cormack, A.M. Representation of a function by its line integrals, with some radiological applications I, II, J. Appt. Phys. 35 (1964), 2908–2912.CrossRefMATHGoogle Scholar
  9. Cormack, A.M. and Quinto, E.T. A Radon transform on spheres through the origin in Rn applications to the Darboux equation, Trans. Amer Math. Soc. 260 (1980), 575–581.MathSciNetMATHGoogle Scholar
  10. Finch, D.V. and Hertle, A. The exponential Radon transform, Contemp. Math. 63 (1987), 67–73.MathSciNetCrossRefGoogle Scholar
  11. Michel, L. Sur certains tenseurs symétriques des projectifs réels, J. Math. Pures Appl. 51 (1972), 275–293.Google Scholar
  12. Solmon, D.C. The X-ray transform, J. Math. Anal. Appl. 56 (1976), 61–83.MathSciNetCrossRefMATHGoogle Scholar
  13. Besse, A. Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb. 93, Springer, New York, 1978.CrossRefGoogle Scholar
  14. Gonzalez, F. Bi-invariant differential operators on the Euclidean motion group and applications to generalized Radon transforms, Ark. Mat. 26 (1988), 191–204.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Sigurdur Helgason 1999

Authors and Affiliations

  • Sigurdur Helgason
    • 1
  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations